
Contract No.:  GS00T00ALD0208   PS02          © 2000                                     Page 1 

 
 

 
Government Smart Card Interoperability Specification 

Contract Modification 
 
 
 
 
 

August 29, 2000 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 2 

Government Smart Cards Interoperability Specification 
 

Table of Contents 
 

Section                Page 
 
Modification Overview        iii 
 
Architecture Overview        1 
1.0 Introduction    1  
 
2.0 Architectural Components       1 
2.1 Service Provider Module       1 
2.2 Basic Services        1 
2.3 Extended Services        1 
 
3.0 Requirements and Constraints      2 
3.1 Interoperability Requirements      2 
3.2 Application Requirements      3 
3.2.1 Cardholder Identification and Authentication   3 
3.2.2 Cryptography        4 
3.2.3 Minimal Conformant Implementation     4 
 
4.0 Interface Definitions        4 
4.1 Basic Services Interface       4 
4.2 Card Edge Presentation       5 
4.3 Card Edge for File System Cards     5 
4.4 Card Edge for Virtual Machine Cards     6 
4.5 SKI for VM Cards        6 
4.6 PKI for VM Cards        6 
 
5.0  SPM Test Requirements        7 
 
Appendix A – Basic Services Interface     8 
Appendix B – Card Edge Presentation      47 
Appendix C – Card Edge for File System Cards    63 
Appendix D – Card Edge for Virtual Machine Cards   67 
Appendix E – SKI for VM Cards      80 
Appendix F – PKI for VM Cards      91 
Appendix G – SPM Test Requirements      103 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 3 

Appendix H – Revised Section J.8, GSA Common Data Model  110 
Glossary          112 
 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 4 

 
Modification Overview 

 
Overview 
 
This modification contains the interoperability specification as required in GSA contract 
resulting from Solicitation Number GS-TFF-99-203, Section H.24 “Government Smart 
Card Interoperability.”  The specifications contained in this modification were developed 
with the assistance of the contract awardees and the Government.  They establish 
technical standards for government smart card interoperability.  This modification 
contains; an architectural model, interface definitions, conformance testing requirements, 
and the revised Section J.8 (GSA Common Data Model) data elements of the contract.  
All products and services procured under this contract must comply with these 
interoperability requirements and technical specifications unless otherwise specifically 
requested by the customer at the time of task order.      
 
Interoperability Specification Updates and Version Control 
 
GSA considers the interoperability technical specifications included in this modification 
to be the specification’s first version (version 1.0).  As such, GSA anticipates revisions to 
these technical specifications as improvements and developments occur with smart cards.  
All products and services procured with this contract are required to conform to the most 
current specification version at the time of task order award.   
 
All future changes and versions will comply with all government smart card 
interoperability requirements within Section H.24 of this contract and be backward 
compatible.  Future specifications and changes will be developed with the assistance of 
the contract awardees and the Government.  GSA will publish and amend this contract 
for all future specification versions.   

 
 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 5 

Architectural Overview 
 
1.0 Introduction 
 
This section outlines the Interoperability Specification Architecture described in GSA’s 
Common Access Identification contract.  The interoperability specification consists of the 
architectural components and a series of associated interface specification documents. 
 
There are many different types of cards, readers, and software in the marketplace. This 
architecture identifies those components necessary for Government smart card 
interoperability.  This is achieved by defining a model for smart card Service Provider 
Modules that present a standard Basic Services Interface to all client applications. 
 
2.0  Architectural Components 
 
2.1 Service Provider Module 
 
All GSC systems contain a GSC Service Provider Module (SPM) consisting of cards, 
card readers, and driver software (Fig. 1).  The purpose of an SPM is to provide card 
related services and functions to client applications through a set of standard interfaces.  
SPMs will be based on the smart card protocol stacks that currently exist on major 
platforms.  The host-side software component of an SPM is referred to as the Service 
Provider Software (SPS). 
 
2.2 Basic Services 
 
The card related services that support logical access control, physical access control, 
cryptography, and biometrics must be interoperable.  This is accomplished by defining a 
set of basic services and a corresponding Basic Services Interface (BSI) that are common 
to all SPMs.  The services provided by the BSI are general enough to support a wide 
range of applications. 
 
2.3 Extended Services 
 
The GSC Architectural Model recognizes that many organizations will require additional 
card related services beyond those available through the BSI.  This is accommodated 
through Extended Service Interfaces (XSIs).  Any imaginable service can be 
implemented within an SPM and provided to client applications through an XSI.  This 
will typically be done at the task order level, since extended services are designed to meet 
the application-specific requirements of a given organization. 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 6 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 1:  Components of the Government Smart Card Architecture 
 
 
3.0  Requirements and Constraints 
 
3.1  Interoperability Requirements 
 
All SPMs must implement the same BSI.  SPMs are therefore interchangeable at the BSI 
level: client applications do not have to be rewritten when one SPM is replaced with 
another since all SPMs present the same service interface.  All protocols and data formats 
for the interoperable card related services of the SPM are completely defined by the BSI 
specification. 
 
The term “card-edge interface” refers to the set of command and response messages 
supported by a particular card or family of cards.  In some cases, the protocols and 
associated card edge interfaces used to implement a particular card level service or 

Smart Card 

Card Reader (IFD) 

Service Provider 
Software (SPS) 

Card-Edge Interface 

Service Provider Module (SPM) 

Basic Services Interface 

Application using Card 
Services 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 7 

function vary widely across card families and manufacturers.  If these differences cannot 
be resolved within the SPS, the GSC interoperability requirement dictates that the 
corresponding functionality cannot be included in the BSI.  To do so would require 
“tunneling” different card- level protocols through the BSI.  Client applications would 
need to be aware of which card they were communicating with, and would need to 
directly implement a set of card- level protocols. 
 
For the reasons stated above, a number of card- level functions have been excluded from 
the BSI to preserve interoperability.  Two principal examples are cryptographic key pair 
generation and the ability to change user PINs.  However, many applications will require 
one or more of these non-interoperable functions.  The GSC Architecture accommodates 
this through the concept of Extended Service Interfaces (XSIs).  Application-specific 
functionality can be included in any SPM implementation by adding one or more XSIs to 
the SPM, and these interfaces can be defined in any way that suits the requirements of the 
application.  Applications need to be modified to recognize and use specific XSIs, and the 
XSIs associated with different SPMs will vary.  XSIs are at the same level of abstraction 
as the BSI, but cannot be defined at the level of the GSC-IS. 
 
Even within the domain of interoperability defined for the BSI, services provided by 
different cards will vary.  For example, depending on the card currently available to an 
SPM, public key cryptographic services might not be available at the card level.  When a 
client application requests services from an SPM that cannot be provided by the card, the 
SPM will return a “Service Not Available” message. 
 
3.2  Application Requirements 
 
3.2.1  Cardholder Identification and Authentication 
 
The GSC Architecture is specifically designed to provide card services that support 
logical and physical access control, biometric identification and authentication, and 
cryptography.  Smart card systems typically provide identification and authentication 
services to logical and physical access control systems.  The cryptographic functions of a 
card system are also associated with cardholder authentication, since challenge-response 
authentication protocols are based on cryptographic calculations using a secret or private 
key stored on the card. 
 
From the card’s perspective, access control system clients require an exchange of 
information needed to identify or authenticate the cardholder.  There are many ways to 
accomplish this exchange, ranging from simple PIN presentation to a cryptographic 
challenge-response authentication using a private or secret key stored on the card.  The 
GSC-IS supports submission of a PIN to the card, transfer of static authentication data 
from the card to client applications, and cryptographic challenge-response protocols 
using either symmetric or asymmetric key algorithms. 
 
Client applications can access the services of an SPM directly through it’s associated 
BSI.  In some cases, applications may prefer to access SPM services through a 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 8 

preexisting high level service interface (HLSI).  In these cases the HLSI is essentially 
layered over the SPM, and the SPM becomes part of a service provider module 
associated with the HLSI.  This is particularly true in the case of cryptographic services, 
since the major operating environments include native cryptographic service interfaces.  
This approach enhances interoperability, since legacy applications will already be 
configured to use these HLSIs.   
 
3.2.2 Cryptography 
 
The SPM model is designed to work with the Microsoft Crypto API, Sun’s Java 
Cryptography Architecture, and the Intel/Open Group Common Data Security 
Architecture.  These cryptographic architectures are based on a client-server model, 
where client applications access Cryptographic Service Provider (CSP) modules through 
a high level Cryptographic Applications Programming Interface (CAPI).  Other 
cryptographic service interfaces are easily accommodated by writing bridge code 
between the BSI and the target CAPI.   
 
An SPM does not support all the services required of a typical CSP, and so it cannot act 
as a standalone CSP for the cryptographic architectures listed above.  However, an SPM 
can be used to “smart card enable” a CSP implementation.  This is done by integrating an 
SPM into a host CSP to provide card-related cryptographic services through a layered 
protocol stack.  Client applications  then access the services of the CSP through the high 
level CAPI, and the CSP communicates with the SPM through it’s BSI.  
 
4.0  Interface Definitions  
 
The GSC-IS package contains a set of interface definitions, standard data formats, and 
mechanisms for mapping heterogeneous smart card command sets to a common card 
edge interface.  These specifications are defined in a series of six documents that are 
summarized below in subsections 4.1 through 4.6.   
 
4.1  GSC: Interface Definition – Basic Services Interface 
 
The BSI is the primary communications interface between client applications and SPMs.  
It is composed of three provider modules:  a utility provider module, a generic container 
provider module, and a cryptographic provider module. 
 
The utility provider module allows discovery of the reader, establishment of a logical 
connection with the card, and monitoring card status.  Client applications can also 
communicate directly with cards using a pass-through function in the utility provider.  
The functions of the utility provider are not protected, and therefore no access control 
rules are enforced for these functions. 
 
The generic container provider supports secure data storage services.  Specifically, 
applications can create, delete, read, and update collections of {Tag, Length, Value} data 
items stored in containers on the card using the functions of this provider.  A generic 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 9 

container is a protected storage area on a smart card.  It can be implemented as a file or as 
a buffer managed by a card applet, depending on the card type (filesystem or virtual 
machine).  Access control rules are applied to the functions of the generic container 
provider, since generic containers are protected objects. 
 
The cryptographic provider module provides random number operations, symmetric key 
infrastructure operations, and public key infrastructure operations.  These operations are 
primarily used for cardholder authentication via cryptographic challenge-response 
protocols.  Access control rules are applied to cryptographic provider module functions. 
 
Detailed information is provided in Appendix A – Basic Services Interface. 
 
4.2  GSC: Interface Definition – Card Edge Presentation 
 
This specification achieves interoperability between SPS components and smart cards by 
defining a card capabilities discovery mechanism.  Each card has a card capabilities 
container that maps the function set of the card to a common generic card-edge interface.  
This mapping mechanism allows an SPS to communicate with both file system cards and 
virtual machine cards.  For file system cards, the card’s APDU set is mapped to a generic 
APDU-level interface.  Virtual machine cards directly implement the predefined generic 
VM card interface modules described in subsections 4.3 through 4.5, and so the card-
edge mapping process for VM cards is simply a matter of selecting the Application 
Identifier (AID) for the card applet that implements the functionality of the desired 
module.   
 
The Card-Edge Interface Presentation document defines a card identifier object, a 
CardURL object to reference card services, an access control rules object, the card 
capabilities file grammar, and the associated generic implementation of an ISO 7816-4 
APDU set for filesystem cards. 
 
Detailed information is provided in Appendix B – Card Edge Presentation. 
 
4.3  GSC: Interface Definition – Card Edge for File System Cards 
 
This specification defines a generic ISO 7816-4 APDU set for file system (non-VM) 
cards.  An SPS uses information from the card capabilities file to map the native APDU 
set of a file system card to the generic APDU set.  This specification presents a common 
card edge interface for all file system cards to the SPS. 
 
Detailed information is provided in Appendix C – Card Edge for File System Cards 
 
4.4  GSC: Interface Definition – Card Edge for Virtual Machine Cards 
 
This specification defines the APDU set of a card applet that provides card- level services 
to support the BSI generic container operations.  
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 10 

Detailed information is provided in Appendix D – Card Edge for Virtual Machine Cards. 
 
4.5  GSC: Interface Definition – SKI for VM Cards 
 
This specification defines the APDU set of a card applet that provides card- level services 
to support the BSI symmetric key cryptographic operations. 
 
Detailed information is provided in Appendix E – SKI for VM Cards. 
 
4.6  GSC: Interface Definition – PKI for VM Cards 
 
This specification defines the APDU set of a card applet that provides card- level services 
to support the BSI public key cryptographic operations. 
 
Detailed information is provided in Appendix F – PKI for VM Cards. 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 11 

5.0   SPM Test Requirements and  Procedures 
 
This specification describes the requirements and procedures used to test SPM 
implementations for conformance to the GSC Interoperability Specification.  Test 
procedures are defined for the modules of the BSI and the Card-Edge interfaces. 
 
Detailed information is provided in Appendix G – SPM Test Requirements 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 12 

Appendix A - GSC: Interface Definition - Basic Services Interface  
 
Scope 
This document is part of the effort led by the GSA to achieve the definition of an inter-
operability standard for Basic Services offered by the Government Smart Cards. 
 
?? A first level of interoperability is defined to protect the Application consuming smart 

cards from the need to know about any specific smart card. This level is achieved by 
the BSI API presented in this document and amounts to the “top” part of an SPS. 

 
?? A second level of interoperability is defined to allow smart cards to inter-operate at 

the card-edge interface. This level allows any SPS provider to inter-operate with any 
smart card that supports the card edge interface. 

 
The goal of this document is to describe a simple set of Application Programming 
Interfaces covering the Basic Services for which the smart cards addressed by the GSA 
are required to inter-operate. 

 
The Basic Services required are: 
?? Secure storage and retrieval of the J.8 data set 
?? smart card elementary cryptographic services 

 
The focus of the system described is interoperability, as well as simplicity. The provider 
is stateless. It does not provide key management but focuses on allowing the enforcement 
of usage policies with their keys.  It is the responsibility of the calling application to 
manage and protect the card access credentials. 
 
The BSI relies on: 
?? A Smart Card Utility provider Module. 

This module abstracts a simple interface compatible with PC/SC and OCF. It allows 
also managing the communication with the smart card and the status of the card. 

?? A Smart Card Secure Storage Services provider Module: the Generic Container 
Provider 
This module abstracts the storage semantic of the smart card, and provides to 
Applications, with the concept of generic container, a simple Tag/value API. 

?? A Smart Card Cryptographic provider Module 
This module provides to applications and specialized middle-ware the essential 
cryptographic services that must be provided by the smart cards. 

 
These modules constitute the software part of the SPM. 

 
The functional scope of the provider is more generic than required so that the 
interoperability standard could be easily extended. 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 13 

Compatibility 
The Provider is compatible with any Smart Card in the following list: 
?? JavaCard 2.1 or MultOS implementing the Card Edge Interface of the Common 

Access Card. 
?? WpSC with its ISO7816-4 extension. 
?? ISO7816-4 smart cards. 
 
Limitations  
The proposed BSI provider is an operational API and not a management API. It does not 
provide services like applet download or applet instantiation, or the creation of a file 
system. It does not allow the changing of access conditions associated with each instance 
or each file, since access conditions are defined during the container creation. 
Furthermore, PIN management functions like Change PIN or Unlock PIN are not part of 
this API.  
The smart card is supposed to be already initialized: applets are downloaded, instantiated, 
and the file system  created. 
Establishing these limitations is balancing act since some services are in the gray area 
between usage and management, like PIN change by the cardholder. Two criteria help to 
make a decision whether the service should be excluded from the interoperability 
specification or not: 
-Is it a rare operation? 
-Is it feasible or very difficult to define an interoperable method for this service? 
 
The fact that a service is excluded from the specification does not mean it is not required 
from a smart card system, it means only that for this service interoperability is not a 
requirement, or that it cannot be technically achieved, so that put ting it in the 
specification would have the result that the specification would not guaranty that all 
implementations would inter-operate. 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 14 

Documents 
The following picture presents the tree of documents that define the standard. The 
outlined square defines the present document and its position within this tree. 

SPM Architecture Overview

Gsc BSI Provider Api 

Gsc
Card-Edge Interface
presentation

Gsc BSI-CE APDU setFile System Cards

VM Cards Gsc SKI CardEdge
API for VM cards

The Government Smart Card Interoperability Standard

Gsc Generic Container Card-Edge
API for VM cards

Gsc PKI Card-Edge
API for VM cards

Gsc SPM test specification 

 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 15 

API Reference 
 
Access Control Management 
All smart card services exposed by the BSI API are submitted to operation specific access 
control.  A set of possible Access Control Rules can be defined for each service, at the 
initialization of the smart card.  
Each mModule of the provider offers a discovery function call that allows an application 
to discover what is the set of Access Control Rules governing the access to the services 
exposed by the module. 
 
The Access Control Rules available are: 
?? Always: the corresponding service can be provided without restrictions 
?? PIN protected: the corresponding service can be provided only if its associated PIN 

code has been already verified 
?? External authenticate: the corresponding service can be provided only after a 

get_challenge APDU.  
?? External Authenticate then PIN : the two methods must be chained successfully 

before access to the service is granted. This allows the authentication of the 
Application and of the user. 

?? External Authenticate or PIN : either one of the two control gives access to the 
service. This allows for a CardHolder validation when a PIN pad is available and for 
an external authentication when no PIN pad is available. Or, this provides an 
Authentication method when the Application cannot be trusted to perform an external 
Authentication and to protect the external authentication key.  

?? Secure Channel: the corresponding service can be provided through a Secure 
Channel managed by a card Secure Messaging layer that can be Open Platform,  DIN, 
the ISO7816-4 Secure Messaging. 

?? Never: the corresponding service can never be provided. 
 

As a reminder, the External Authentication method should comply with ISO7816-4. The 
algorithm mandated is DES3-ECB, with a double length key-size 16 Bytes, and a 
challenge of 8 Bytes. 
 
For the External Authentication Access Control Rule, the provider provides two modes of 
operation. 

 
?? The weak mode : In this mode, the External authent ication key is provided to the 

provider in clear text, by the calling application, and the provider encapsulates the 
external authentication transaction with the card or the applet. The clear text key is 
provided in the Key member of the Authenticator structure defined hereafter. 
. 

?? The strong mode : If the Application has very high operational security requirements, 
where it is not acceptable to expose the External Authentication Key [for example the 
Application operates a Hardware Security Module (HSM)]. In this case, the following 
mechanism is proposed: an explicit, provider level, get challenge functions will ask 
the card or the applet to provide a challenge, which is returned to the Application. 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 16 

The Application can then have the challenge encrypted by its Hardware Security 
Module and provides the resulting cryptogram in the AuthValue field of the 
Authenticator structure. This way, the authentication key will never leave the 
Hardware Security Module. 

 
The Secure channel Access Control rule implies cryptographic operations performed at 
the APDU level (MAC). A pass-through call is provided to allow applications to create a 
secure channel and operate inside a secure channel. 

 
Security Context  
A function is provided  that allows the Application to establish the Security Context 
required by the card by executing the Access Control Rule specific to a card service. This 
context must be released. For the Secure Channel Access Control rules, the Provider 
offers only a transport service, the calling application is entirely responsible for managing 
the security context.  
 
Mandatory Cryptographic Algorithms  
?? Algorithm Identifier “0x81”: DES3-ECB, with a double length key-size, 16 Bytes.1 
?? Algorithm Identifier “0xA3”: RSA_NO_PAD, computation on the private key, 

Chinese Remainder. 
?? Algorithm Identifier “0x81”: DES3-CBC, with a double length key-size, 16 Bytes 
 

                                                 
1 For detail description see “Open Platform, Card Specification, version 2.01’, April 
7,2000” 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 17 

Return Codes 
 
Following is the list of the BSI API return codes. Codes returned by each function 
are listed with the function’s description later in this chapter. 
 

Return Code Meaning 
BSI_ACCESS_DENIED Access conditions are not fulfilled 
BSI_BAD_AID The card application of the given AID 

cannot be found on the card 
BSI_BAD_ALGO_ID The algorithm ID provided to the 

cryptographic Provider is not supported. 
BSI_BAD_AUTH Authenticator value or type is not correct  
BSI_BAD_HANDLE Card communication handle is unknown 
BSI_BAD_PARAM Incorrect parameter value 
BSI_CARD_ABSENT There is no card in the reader 
BSI_CARD_NOT_INIT The smart card is not yet initialized 
BSI_CARD_PRESENT There is a card in the reader 
BSI_CARD_REMOVED The connected smart card has been removed 
BSI_CARD_RESET The communication with the card was reset 
BSI_COMM_ERROR Error during communication with the card 
BSI_CREATE_ERROR Error creating data in Generic Container  
BSI_DATA_CORRUPTED 
 

The provider has detected tha t the data read 
from the smart card is corrupted. 

BSI_DELETE_ERROR Error deleting data in Generic Container  
BSI_INSUFFICIENT_BUFFER The buffer provided to retrieve data is too 

small 
BSI_LOAD_LIB_FAILED Loading of card communication library 

failed 
BSI_NO_MORE_DATA No space available for data creation in 

container 
BSI_NOT_IMPLEMENTED 
 

The service is not implemented in the API  
version 

BSI_OK Execution completed successfully 
BSI_PIN_LOCKED The card is locked because too many wrong 

PIN have been entered. 
BSI_READ ERROR Error reading data in Generic Container or 

getting a Certificate 
BSI_SERVICE_NOT_AVAILAB
LE 

The card does not implement a BSI service 
required by the Application. 

BSI_UNKNOWN_ERROR An error occurred but the cause is unknown  
BSI_UPDATE_ERROR Error updating data in Generic Container  
BSI_ACR_NOT_AVAILABLE 
 
 
 
BSI_TAG_EXISTS 

The card or applet does not support the 
access control rule for which the application 
was attempting to establish a security 
context. 
Attempt to duplicate an existing tag. 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 18 

 
Access Control Rules  
?? The following Access Control Rules can be requested for each BSI service. An exact 

matrix of each Access Control Rule supported within a given provider is defined in 
the provider specific chapter.  

 
Access Control Rules  Number of 

Authenticators 
Meaning 

BSI_ACR_ALWAYS 0 No access control rule is required 
BSI_ACR_NEVER 1 Operation is never possible 
BSI_ACR_PIN 1 PIN code is required 
BSI_ACR_XAUTH 1 External authentication, performed 

as a challenge/response is required 
BSI_ACR_XAUTH_THEN_
PIN 

2 External Authentication followed 
by a PIN presentation 

BSI_ACR_XAUTH_OR_PI
N 

1 The object method can be accessed 
either after an External 
Authentication or after a successful 
CHV 

BSI_SECURE_CHANNEL_
OP 

0 The calling Application establishes 
and operates inside the passthru 
function 

BSI_SECURE_CHANNEL_
DIN 

0 The calling Application establishes 
and operates inside the passthru 
function 

BSI_SECURE_CHANNEL_
ISO 
 
 

0 The calling Application establishes 
and operates inside the passthru 
function 

 
It is the responsibility of the calling application to provide the required Access Control 
Key or the Access Control Authenticator. The provider handles the implementation of the 
access control rule. 
 
?? Authenticator structure 

typedef struct strBSI_Authenticator{ 
unsigned int  unACRType; 
unsigned char*
 uszAuthValue[BSI_AUTHENTICATOR_MAX_LEN]; 
unsigned int  unAuthLen; 
unsigned char* uszKey[BSI_KEY_LENGTH]; 
} BSIAuthenticator; 
 
unACRType : access control rule. 
usAuthValue : authenticator value, can be the PIN code or the External 
Authentication cryptogram.  



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 19 

unAuthLen: authenticator value length. 
UszKey: Authentication key. To be used in the provider “weak” mode. 
The Authenticator must be provided as a parameter to all access calls of the provider. 

 
?? Card handle 

#typedef int UTILCardHandle 
Card connection handle. 
 

?? Tag2 
#typedef unsigned char gcTag 
The Generic Container Provider operates on Tagged data, and thus relies on a 
definition of what a TAG is. 
 

?? Container size structure 
typedef struct strGC_ContainerSize{ 
unsigned int  unMaxNbDataItems, 
unsigned int  unMaxValueStorageSize, 
} GCContainerSize; 
 
MaxNbDataItems: The maximum number of {Tag, Length, Value} data items 
this instance of the Generic Container can hold. The provider is responsible for 
calculating this value. 
 
UnMaxValueStorageSize: The size of the value storage area of the Container. 

 

                                                 
2 see document “gsc BSI internal TLV format specification” 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 20 

GscBsiUtility Provider 
 
Utility Provider Module function list 
Allows the discovery of the reader, the establishment of a connection with the card, and 
the monitoring of the card. 

 
 gscBsiUtilGetCardStatus() 

Retrieves card presence for a connection handle or a reader.  
 
gscBsiUtilCardConnect() 

Connect to the card, using the reader name the card is inserted in.  
 
gscBsiUtilCardDisconnect() 

Disconnect to the card 
 
gscBsiUtilGetCardProperties()   

Retrieve card dependant data (Serial number) 
 
gscBsiGcGetContainerProperties() 
      Retrieve the properties of the Container(s) 
 
gscBsiUtilGetVersion() 

Retrieve the version of the CG provider. 
 
gscBsiUtilPassthru() 

Allows to send an APDU to the card or the applet and get the answer from the card. 
 
gscBsiUtilAcquireContext() 

Establishes the Security Context required by the command, as discovered using the 
appropriate get_properties function.  

 
gscBsiUtilReleaseContext() 

Releases the Security Context previously established.  
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 21 

 
Access Control Rules supported 
Not Applicable. The operations of the Utility Provider are not protected. Login is not 
required. 
 
gscBsiUtilGetCardStatus() 
 
Purpose Retrieves card status knowing whether the card is already 

connected.  
Notes: 
Connection handle and reader parameters are exclusive.  
 

Prototype Int  gscBsiUtilGetCardStatus( 
IN UTILCardHandle        hCard); 
 

Parameters Hcard:  Input parameter  
Card connection handle, from 
gscBsiUtilCardConnect() 

 
 

Return Codes BSI_OK  a connected card present for the 
handle 

BSI_CARD_REMOVED Card removed 
BSI_CARD_PRESENT              A card is in the reader 
BSI_CARD_ABSENT               There is no card in the reader 

  
  



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 22 

 
gscBsiUtilCardConnect() 
 
Purpose Connect to the card.           

 
Prototype Int  gscBsiUtilCardConnect( 

OUT UTILCardHandle* phCard); 
 

 
Parameters phCard :  Output parameter  

Card connection handle. 
 

 
Return Codes BSI_OK  Connection successful 

BSI_BAD_PARAM  Bad parameter 
 

  
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 23 

 
gscBsiUtilCardDisconnect() 
 
Purpose Disconnect to the card. 

 
Prototype Int  gscBsiUtilCardDisconnect( 

IN UTILCardHandle  hCard); 
 

Parameters HCard :  Input parameter  
Card connection handle, from 
gscBsiUtilCardConnect() 
 

Return Codes BSI_OK  Successful function 
BSI_BAD_HANDLE  Unknown card handle 
 

 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 24 

gscBsiUtilGetCardProperties() 
 
Purpose Retrieves the version of the Card as well as the capability of the card.Usage is 

to use the call once with a NULL pointer to get the size required and then, to 
allocate the buffer to the proper size. 
 

Prototype Int  gscBsiUtilGetCardProperties( 
   IN UTILCardHandle        hCard, 
   OUT unsigned char*    puszCardUniqueID, 
   IN/OUT unsigned int*    punUniqueIDLength, 
   OUT unsigned int      unCardCapability 
   ); 
 

Parameters puszCardUniqueID :  Output parameter  
           Pre-allocated buffer. 

  Version of the Provider : “major,minor,revision,build_number” 
 

punUniqueIDLength: Input / Output parameter 
          Length of the Card Unique ID string  expected is provided as input. 
          Length of the exact length of the returned string is provided as output. 

 
UnCardCapability: Output parameter 
          Bitwise mask defining the provider supported by the card: 
#define BSI_GCJ8 0x00000001 
#define BSI_GCJ8X 0x00000002 
#define BSI_SKI 0x00000004 
#define BSI_PKI 0x00000008 

 
Notes: 
The version is a string ended by a ‘\0’ character 
 

Return Codes BSI_OK  Function successful 
BSI_BAD_PARAM                     
BSI_INSUFFICIENT_BUFFER  

  



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 25 

gscBsiGcGetContainerProperties() 
 
Purpose Retrieve the properties of the Container(s) : Access Control Rules or read Tag 

list, read value and   value  operations on the container. 
The Access Control Rules returned are common for all data items managed by 
the selected container. 
 

Prototype int  gscBsiGcGetContainerProperties( 
   IN UTILCardHandle        hCard, 
   IN unsigned char*    usAID, 
   IN unsigned int         unAIDLen, 
   OUT GCacr*              pstrACR, 
   OUT GCContainerSize*     pstrContainerSizes, 
   OUT unsigned char*       pszContainerVersion  
   IN OUT unsigned int*     pszContainerVersionLength 
); 
 

Parameters  hCard:  Input parameter  
Card connection handle, from gscBsiUtilCardConnect() 
 

usAID:  Input parameter  
GC AID value. 
 

unAIDLen:  Input parameter  
GC AID value length. 
 

pstrACR:  Output parameter  
Structure indicating all access conditions for operations. The caller must 
allocate the structure.  

 
pstrContainerSizes: Output parameter  
          Structure indicating the sizes of the two storage areas of the container .The      
structure must be allocated by the caller  
 
PszContainerVersion: Output parameter 
    The version of the Generic Container. 
 
PszContainerVersionLength: Input/Output parameter 
    The length of version of the Generic Container. 
 
 

Return Codes BSI_OK  Successful function 
BSI_BAD_AID  There is no GC for this AID 
BSI_BAD_PARAM  One of the output access right pointer is 
  NULL  



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 26 

 
 
  
  
 
gscBsiUtilGetVersion() 
 
Purpose Retrieves the version of the Provider 

 
Prototype Int  gscBsiUtilGetVersion( 

OUT unsigned char* puszVersion, 
OUT unsigned int*
 punVersionLength); 

 
Parameters PuszVersion :  Output parameter  

           Pre-allocated buffer. 
Version of the Provider : 
“major,minor,revision,build_number” 
 

PunVersionLength : Input / Output parameter 
          Length of the version string  expected is provided as 
input. 
           Length of the exact length of the returned string. 

 
Notes: 
The version is a string ended by a ‘\0’ character 
 

Return Codes BSI_OK  Function successful 
BSI_BAD_PARAM                     
BSI_INSUFFICIENT_BUFFER 

  
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 27 

gscBsiUtilPassthru() 
 
Purpose Allows to send an APDU to the card or the applet and get 

the answer from the card.  
 

Prototype Int  gscBsiUtilPassthru( 
   IN UTILCardHandle        hCard, 
   IN unsigned char*        
puszCardCommand, 
   IN unsigned int     unCardCommandLen, 
   OUT unsigned char*       
puszCardResponse, 
   OUT unsigned int*     
punCardResponseLen); 
 
 

Parameters hCard:  Input parameter  
Card connection handle, from 
gscBsiUtilCardConnect() 
 

puszCardCommand:  Input parameter  
An APDU sent to the card by an Application. This 
allows an application to enforce APDU level security 
like a secure channel. 

 
unCardCommandLen:  Input parameter  

Length of the APDU command sent to the card by an 
Application.  

 
puszCardResponse:  Output parameter  

An APDU sent to the card by an Application. This 
allows an application to enforce APDU level security 
like a secure channel. 
The buffer must be pre-allocated by the caller. The 
function can be called twice to discover the exact size of 
the buffer to allocate. The first time it can be called with 
NULL, and will return the size of the buffer needed. 

 
punCardResponseLen:  Output parameter  

Length of the APDU command returned to Application 
by the Card or applet. Must be allocated by the calling 
Application. 

Note:  PunCardResponseLen is an IN/Out Parameter where the 
passed in length is the length of the allocated buffer. 
 

Return Codes BSI_OK  Function successful 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 28 

BSI_BAD_PARAM 
BSI_INSUFFICIENT_BUFFER   the size of the allocated 

buffer is insufficient to contain the returned 
APDU.         

 
  



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 29 

gscBsiUtilAcquireContext() 
In the so-called weak mode, the application will NULL the "uszAuthValue" and 
put the key in uszKey". This will tell the provider that the weak mode has been 
chosen and  
that it should perform the XAUTH transaction itself.  
In strong mode, the acquire_context call was preceeded by a get_challenge, so the  
application computes the authenticator itself and puts it in "uszAuthValue", and  
NULLs "uszKey".  
The principle it that the application knows the environment and the level of security  
it needs to apply much better than the middleware.  
 

Purpose Login to the Card using the appropriate Authenticator. 
Prototype Int  gscBsiUtilAcquireContext( 

IN UTILCardHandle       hCard, 
IN unsigned char*  usAID, 
IN unsigned int  unAIDLen, 
IN BSIAuthenticator*
 pstrAuthenticator, 

IN unsigned int  unAuthNb); 
Parameters hCard:  Input parameter  

Card connection handle, from 
gscBsiUtilCardConnect() 
 

usAID:  Input parameter  
GCA AID value. 

 
unAIDLen:  Input parameter  

GCA AID value length. 
 
pstrAuthenticator:  Input parameter  

Array of structures containing the authenticator(s) 
specified by the Access Control Rule required to update 
a value in the container [obtained with 
gcGetContainerProperties()]. The caller of the provider 
must allocate this structure.  

 
UnAuthNb:  Input parameter  

Size of pstrAuthenticator array. This allows to 
chain authenticators. If two authentication methods are 
chained, like with XAUTH_THEN_PIN, the size must 
be put to two. The Provider encapsulates the chaining. 

Return Codes BSI_OK  Function successful 
BSI_BAD_PARAM                     
BSI_ACCESS_DENIED 

 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 30 

gscBsiUtilReleaseContext() 
 
Purpose Logout  of the Card using the appropriate Authenticator. 

 
Prototype Int  gscBsiUtilReleaseContext( 

IN UTILCardHandle       hCard, 
IN unsigned char*  usAID, 
IN unsigned int  unAIDLen); 

 
Parameters HCard:  Input parameter  

Card connection handle, from 
gscBsiUtilCardConnect() 
 

UsAID:  Input parameter  
GCA AID value. 

 
UnAIDLen:  Input parameter  

GCA AID value length. 
 

Return Codes BSI_OK  Function successful 
BSI_BAD_PARAM                     

  
 
Generic Container Provider 
 
The scope of the GC provider is to allow the creation, deletion, read and update of 
collections of {Tag, Length, value} data-items on the card, in a container, with the 
appropriate Access Control Management. 
 
A Generic Container is a protected storage area on a smart card. It can be implemented as 
a file, on a file system card or on a WpSC card, or as a buffer managed by an applet on a 
VM card. 
 
This provider API has been designed to provide an interface compatible with the 
Common Access Card Demographic information and the GSA J.8 identity information, 
as well as data-based extended services such as health data storage, certification and 
training data, roistering, property management, including the storage and retrieval of a 
biometric template  
 
The provider offers a number of “discovery” functions to the applications: 
?? Discover the list of data items managed by the Container 
?? Discover the properties of the Container in terms of size and Access Control Rules 
 
A container is created with a set of Access Control Rules for create, delete, read and 
update operations. In order to discriminate between data sets requiring different level of 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 31 

security, different containers with a different set of Access Control Rules must be 
created. It is assumed that the keys required for read access and the keys required for 
update access can be different. 
 
The available size of the container limits the number and size of data items within the 
card. 
 
The provider identifies data- items with their Tag. This Tag  enables the provider to 
access the data- item Value  stored on the card. The provider offers also the service of 
listing the Tags managed by a Container, allowing thereby to an application to discover 
what the container managed.manages, to acquire the security context, and to read the 
values.  

 
Generic Container Provider Module function list 

 
gscBsiGcDataCreate() 

Create a new data item in the selected container. This will store a value and a Tag.  
 
gscBsiGcDataDelete() 

Delete a data in the selected container. 
 
gscBsiGcReadTagList() 

Read the list of Tags in the selected container. 
 

gscBsiGcReadValue() 
Retrieve the current value of a given Tag in the selected container. 

 
gscBsiGcUpdateValue() 

Update the current value of a given Tag with the provided value.  
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 32 

Access Control 
 
gscBsiGcGetContainerProperties() 

Retrieve the access conditions enabling to read and update Tags and their values for a 
specific container. Access conditions returned are common for all data items present 
in the selected container.  

 
Access Control Rules supported 

Access Control Rules (ACR) on operations: 
typedef struct strGC_ACR{ 
unsigned int  unCreateACR; 
unsigned int  unDeleteACR; 
unsigned int  unReadTagListACR; 
unsigned int  unReadValueACR; 
unsigned int  unUpdateValueACR; 
} GCacr; 

 
 

Service ACR supported 
gscBsiGcDataCreate() BSI_ACR_ALWAYS|| 

BSI_ACR_NEVER|| 
BSI_ACR_PIN||BSI_ACR_XAUTH 

gscBsiGcDataDelete() BSI_ACR_ALWAYS|| 
BSI_ACR_NEVER|| 
BSI_ACR_PIN||BSI_ACR_XAUTH 

gscBsiGcReadTagList() BSI_ACR_ALWAYS||BSI_ACR_PI
N 
||BSI_ACR_XAUTH 

gscBsiGcReadValue() BSI_ACR_ALWAYS||BSI_ACR_PI
N 
||BSI_ACR_XAUTH 

gscBsiGcUpdateValue() BSI_ACR_ALWAYS|| 
BSI_ACR_NEVER|| 
BSI_ACR_PIN||BSI_ACR_XAUTH 

gscBsiGcGetContainerProperties() N/A 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 33 

gscBsiGcGetContainerProperties() 
 
Purpose Retrieve the properties of the Container(s) : Access Control Rules or read 

Tag list, read value and   value  operations on the container. 
The Access Control Rules returned are common for all data items 
managed by the selected container. 
 

Prototype int  gscBsiGcGetContainerProperties( 
   IN UTILCardHandle        hCard, 
   IN unsigned char*     usAID, 
   IN unsigned int     unAIDLen, 
   OUT GCacr*           pstrACR, 
   OUT GCContainerSize*     pstrContainerSizes, 
   OUT unsigned char*       pszContainerVersion  
   IN OUT unsigned int*     punContainerVersionLength 
); 
 

Parameters  hCard:  Input parameter  
Card connection handle, from gscBsiUtilCardConnect() 
 

usAID:  Input parameter  
GC AID value. 
 

unAIDLen:  Input parameter  
GC AID value length. 
 

pstrACR:  Output parameter  
Structure indicating all access conditions for operations. The caller 
must allocate the structure.  

 
pstrContainerSizes: Output parameter  
          Structure indicating the sizes of the two storage areas of the 
container .The structure must be allocated by the caller 
 
PszContainerVersion: Output parameter 
    The version of the Generic Container. 
 
PszContainerVersionLength: Input/Output parameter 
    The length of version of the Generic Container.  
 
 

Return Codes BSI_OK  Successful function 
BSI_BAD_AID  There is no GC for this AID 
BSI_BAD_PARAM  One of the output access right pointer is 
  NULL  



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 34 

 
 
gscBsiGcDataCreate() 
 
Purpose Create a new data item {Tag, Length, Value} in the selected 

container {AID}. 
The creation of a data is performed in one atomic step. 
Tag and Value of the data are provided to the provider. 
 
To perform the creation of a data, the authenticator associated 
with the update value access condition to the container must be 
set in the pstrAuthenticator structure. The access 
condition for updating values is returned by the 
gscBsiGcGetContainerProperties() function. 
 

Prototype Int  gscBsiGcDataCreate( 
IN UTILCardHandle        hCard, 
IN unsigned char*  usAID, 
IN unsigned int  unAIDLen, 
IN gcTag             usTag, 
IN unsigned char*  usValue, 
IN unsigned int  unValueLen); 

 
Parameters hCard :  Input parameter  

Card connection handle, from 
gscBsiUtilCardConnect() 

 
usAID:  Input parameter  

GCA AID value. 
 
unAIDLen:  Input parameter  

GCA AID value length. 
 
usTag:  Input parameter  

Tag of Data item to store. 
 
usValue:  Input parameter  

Data value to store. 
 
unValueLen:  Input parameter  

Data value length, in bytes. 
 

Return Codes BSI_OK  Container successfully created. 
BSI_BAD_HANDLE  Unknown card handle 
BSI_BAD_AID  There is no GCA for this AID 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 35 

BSI_ ACCESS_DENIED The Access Control Rule was not 
fulfilled. The access to the data item is 
rejected. 

BSI_BAD_PARAM   Bad input parameter.  
BSI_NO_MORE_SPACE No more space available in the 

GCA 
BSI_TAG_EXISTS      Attempt to duplicate an existing tag. 
 

 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 36 

gscBsiGcDataDelete() 
 
Purpose Delete all data item information in the selected container.  Tag 

and value are lost. 
To perform the deletion of a data, the corresponding Access 
Control Rule  to the card Container must be fulfilled in the 
pstrAuthenticator structure accordingly to the 
requested update access rights returned by the 
gscBsiGcGetContainerProperties() function. 
 

Prototype int  gscBsiGcDataDelete( 
IN UTILCardHandle        hCard, 
IN unsigned char*  usAID, 
IN unsigned int  unAIDLen, 
IN gcTag        usTag) 
 

Parameters hCard :  Input parameter  
Card connection handle, from 
gscBsiUtilCardConnect() 

 
usAID:  Input parameter  

GC AID value. 
 

unAIDLen:  Input parameter  
GC AID value length. 
 

UsTag:  Input parameter  
Tag of  data item to delete. 

 
 

Return Codes BSI_OK  Deletion successful 
BSI_BAD_HANDLE  Unknown card handle 
BSI_ACCESS_DENIED  The Access Control Rule have not 

been fulfilled. The access to the data item is 
rejected. 

BSI_BAD_AID There is no Generic Container for this AID 
BSI_BAD_TAG No data with this tag was found in the 

container. 
BSI_BAD_PARAM  Bad input parameter.  
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 37 

gscBsiGcReadTagList() 
 
Purpose Read of the list of Tags of the selected container 

 
To the read the list of Tags, the access conditions to the read Tags 
operation must be set in the pstrAuthenticator structure. The 
access condition can be obtained with the 
gscBsiGcGetContainerProperties() function. 
 

Prototype int  gscBsiGcReadTagList( 
IN UTILCardHandle        hCard, 
IN unsigned char*  usAID, 
IN unsigned int  unAIDLen, 

  OUT gcTag*             pTagArray,  
OUT unsigned int*       pNbTags) 
 

Parameters hCard :  Input parameter  
Card connection handle, from gscBsiUtilCardConnect() 

 
usAID:  Input parameter  

GC AID value. 
 

unAIDLen:  Input parameter  
GC  AID value length. 
 

 
pTagArray:  Output parameter  

Array of tags. The array of structures must be pre-allocated by the 
caller. The function can be called twice to discover the exact 
number of tags to allocate. The first time it can be called with 
NULL, and will return the number of tags. 

 
pNbTags: Output parameter  
           Number of returned tags. 
Note:  pNbTags is an IN/Out Parameter where the passed in length is the 
length of the allocated buffer. 

Return Codes BSI_OK  Read successful 
BSI_BAD_HANDLE  Unknown card handle 
BSI_BAD_AID  There is no container for this AID 
BSI_BAD_AUTH  Provided authentication value (or type) is 

incorrect 
BSI_ACCESS_DENIED The Access Control Rule was not fulfilled 
BSI_INSUFFICIENT_BUFFER The buffer provided to retrieve data is 

to small 
BSI_BAD_PARAM   Bad input parameter.  



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 38 

 
 
gscBsiGcReadValue() 
 
Purpose Retrieves the current Value of the given Tag in the selected 

container. 
 
The Authenticator(s) specified by the Access Control Rule  for 
the ReadValue operation must be set in the 
pstrAuthenticator structure. The Access Control Rule 
can be obtained with the 
gscBsiGcGetContainerProperties() function. 
 

Prototype int  gscBsiGcReadValue( 
IN UTILCardHandle        hCard, 
IN unsigned char*  usAID, 
IN unsigned int  unAIDLen, 
IN gcTag        usTag, 
OUT unsigned char*  usValue, 
IN/OUT unsigned int*       
punValueLen) 
 

Parameters hCard :  Input parameter  
Card connection handle, from 
gscBsiUtilCardConnect() 

 
usAID:  Input parameter  

GC AID value. 
 

unAIDLen:  Input parameter  
GC  AID value length. 

 
 
UsTag:  Input parameter  

Tag of  the data item to read. 
 
UsValue :  Output parameter  

Value read returned by the function. must be allocated by 
the caller 
 

PunValueLen :  Input/Output parameter  
Value length. 
IN : size of the allocated buffer 
OUT: size of the value returned by the function. 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 39 

Return Codes BSI_OK  Read successful. 
BSI_BAD_HANDLE  Unknown card handle 
BSI_BAD_AID  There is no container for this ID. 
BSI_BAD_TAG                          This GC instance does not 

manage a data item of this Tag. 
BSI_BAD_AUTH  Provided authentication value (or 

type) is incorrect 
BSI_ ACCESS_DENIED The Access Control Rule was not 

fulfilled. The access to the data item is 
rejected. 

BSI_BAD_PARAM  punValueLen  is NULL 
BSI_INSUFFICIENT_BUFFER The buffer provided to 

retrieve data is to small 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 40 

gscBsiGcUpdateValue() 
 
Purpose Updates the current Value of the given tag with the provided 

value. 
 
The Authenticator(s) specified by the Access Control Rule  for 
the UpdateValue operation must be set in the 
pstrAuthenticator structure. The Access Control Rule 
can be obtained with the 
gscBsiGcGetContainerProperties() function. 
 

Prototype Int  gscBsiGcUpdateValue( 
IN UTILCardHandle        hCard, 
IN unsigned char*  usAID, 
IN unsigned int  unAIDLen, 
IN gcTag        usTag, 
IN unsigned char*  usValue, 
IN unsigned int  unValueLen 
) 
 

Parameters hCard:  Input parameter  
Card connection handle, from 
gscBsiUtilCardConnect() 

 
usAID:  Input parameter  

GC AID value. 
 
unAIDLen:  Input parameter  

GC  AID value length. 
 
UsTag:  Input parameter  

Tag of  data item to update the value of.. 
 
usValue :  Input parameter  

Value for the data- item to be updated to. 
 

unValueLen :  Input parameter  
Value Length. 
 

Return Codes BSI_OK  Data value successfully updated. 
BSI_BAD_HANDLE  Unknown card handle 
BSI_BAD_AID  There is no container for this ID 
BSI_BAD_TAG                         This GC instance does not 

manage a data item of this Tag. 
BSI_BAD_AUTH  Provided authenticator value or type 

is incorrect 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 41 

is incorrect 
BSI_ ACCESS_DENIED  The Access Control Rule was not 

fulfilled. The access to the data item is 
rejected. 

BSI_NO_MORE_SPACE No more space available in this GC 
BSI_BAD_PARAM   Bad input parameter.  
 

  
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 42 

Cryptographic Provider 
 
Cryptographic Provider Module function list 

 
RANDOM NUMBER operations 
gscBsiGetChallenge() 

Retrieve a challenge from the card.  
 

SKI operations 
gscBsiSkiInternalAuthenticate() 

Compute a symmetric key cryptography authenticator in response to a challenge. 
 

PKI operations 
gscBsiPkiCompute() 

Compute the private key encrypt/decrypt. The mandatory PKI algorithm of the BSI is 
RSA_NO_PAD.  

 
gscBsiPkiReadCertificate() 

Read the certificate 
 

gscBsiPkiGetProperties() 
Retrieve status information on the PKI instance.  

 
Access Control 
gscBsiGetCryptoProperties() 

Retrieve access conditions enabling to read and update Tags and values for a specific 
container.  
Access conditions returned are common for all data items present in the selected 
container.  

 
Access Control Rules supported 

Access Control Rules (ACR) on operations cryptographic operations: 
typedef struct strCrypto_ACR{ 
unsigned int  unGetChallengeACR; 
unsigned int  unInternalAuthenticateACR; 
unsigned int  unPkiComputeACR; 
unsigned int  unReadCertificateACR; 
} CRYPTOacr; 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 43 

 
Service ACR supported 
gscBsiGetChallenge() BSI_ACR_ALWAYS|| 

BSI_ACR_PIN 
gscBsiSkiInternalAuthenticate() BSI_ACR_ALWAYS|| 

BSI_ACR_PIN||BSI_ACR_XAUTH 
gscBsiPkiCompute() BSI_ACR_ALWAYS||BSI_ACR_PI

N 
||BSI_ACR_XAUTH 

gscBsiPkiReadCertificate() BSI_ACR_ALWAYS||BSI_ACR_PI
N 
||BSI_ACR_XAUTH 

gscBsiGetCryptoProperties() N/A 
 
gscBsiGetCryptoProperties() 

 
Purpose Retrieves card dependant data (card serial number). 

 
Synopsis int gscBsiGetCryptoProperties( 

IN UTILCardHandle  hCard, 
IN unsigned char*  usAID, 
IN unsigned int  unAIDLen, 

     OUT CRYPTOacr*           pstrACR, 
OUT unsigned int* 
 punKeyLength); 

 
Parameters hCard:  Input parameter  

Card connection handle, from 
gscBsiUtilCardConnect() 

 
usAID:  Input parameter  

PKI AID value. 
 

unAIDLen:  Input parameter  
 PKI AID value length. 
 
pstrACR:  Output parameter  

The caller must allocate structure indicating all access 
conditions for operations .The structure.  

 
punKeyLength:  Output parameter  
          RSA key length managed by the instance. 

 
Return Codes PKI_OK  card present 

PKI_BAD_HANDLE  Unknown card handle 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 44 

 
 
gscBsiGetChallenge() 
 

Purpose Retrieves a Challenge from the selected AID. This function is 
to be used only in for strong key management requirements 
when the External Authentication key should not be exposed in 
clear text. It is the first step for a strong authentication of the 
application to the card. 
 

Prototype int  gscBsiGetChallenge( 
IN UTILCardHandle        hCard, 
IN unsigned char*  usAID, 
IN unsigned int  unAIDLen, 
OUT unsigned char* 
 uszChallenge, 
IN unsigned int      unChallengeLen) 
 

Parameters  hCard :  Input parameter  
Card connection handle, from 
gscBsiUtilCardConnect() 

 
usAID:  Input parameter  

GC AID value. 
 

unAIDLen:  Input parameter  
GC  AID value length. 

 
uszChallenge: Output parameter  

very good quality random number returned by the GC 
applet.  

 
punChallengeLen: Output parameter . 

8 Bytes. 
 

Return Codes BSI_OK  Read successful. 
BSI_BAD_HANDLE  Unknown card handle 
BSI_BAD_AID  There is no container for this ID. 
BSI_BAD_TAG                          This GC instance does not 

manage a data item of this Tag. 
BSI_BAD_AUTH  Provided authentication value (or 

type) is incorrect 
BSI_BAD_PARAM  punValueLen  is NULL 
 

 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 45 

gscBsiPkiCompute() 
 

Purpose Computes RSA operations for a given challenge. 
 

Synopsis int gscBsipkiCompute( 
IN UTILCardHandle  hCard, 
IN unsigned char*  usAID, 
IN unsigned int  unAIDLen, 
IN unsigned char         ucAlgoID, 
IN unsigned char*  pMessage, 
IN unsigned int  unMessageLen, 
IN/OUT unsigned char* pResult, 
IN/OUT unsigned int* punResultLen); 

 
Parameters hCard:  Input parameter  

Card connection handle, from 
gscBsiUtilCardConnect() 
 

usAID:  Input parameter  
PKI AID value 
 

unAIDLen:  Input parameter  
PKI AID length 

ucAlgoID:  Input parameter  
Algorithm Identifier. In this version of the 
interoperability specification, the only algorithm 
supported is RSA_NO_PAD, with an ID of “0xA3”. 
 

pMessage:  Input parameter  
Message to sign. 
 

unMessageLen:  Input parameter  
Message length to sign. 
 

pResult:  Output parameter  
Buffer containing the signature. 

 
punResultLen:  Output parameter  

Length of the signature buffer. 
 
Note: 
PunResultLen must indicate the size of the pre-allocated 
memory. The function may be called with pResult = 
NULL, in this case the function returns the signature 
buffer length in punResultLen. 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 46 

 
Note: This call assumes the card uses RSA_NO_PAD 
(offers maximum application interoperability) so the 
operation of encryption (signature) is the same as 
decryption. 
 

Return Codes PKI_OK  Function successful 
PKI_BAD_HANDLE  Unknown card handle 
PKI_BAD_PARAM  Bad parameter 
PKI_ACCESS_DENIED Wrong PIN code. 
PKI_INSUFFICIENT_BUFFER The pre-allocated buffer was 

too small to contain the result. 
 

 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 47 

gscBsiPkiReadCertificate() 
 

Purpose Reads the certificate from the card 
 

Synopsis int gscBsiPkiReadCertificate( 
IN IDCardHandle  hCard, 
IN unsigned char*  usAID, 
IN unsigned int  unAIDLen, 
OUT unsigned char* 
 pCertificate, 
OUT unsigned int* 
 punCertificateLen); 

 
Parameters hCard:  Input parameter  

Card connection handle, from 
gscBsiUtilCardConnect() 
 

usAID:  Input parameter  
PKI AID value 
 

unAIDLen:  Input parameter  
PKI AID length 
 

pCertificate:  Output parameter  
Buffer containing the signature. 

 
punCertificateLen:  Output parameter  

Length of the signature buffer. 
 
PunResultLen must indicate the size of the pre-allocated 
memory. The function may be called with pResult = 
NULL, in this case the function returns the signature 
buffer length in punResultLen. 
 

Return Codes PKI_OK  Function successful 
PKI_BAD_HANDLE  Unknown card handle 
PKI_BAD_PARAM 
PKI_ACCESS_DENIED Wrong PIN code. 
 

 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 48 

gscBsiSkiInternalAuthenticate () 
 

Purpose Compute a symmetric key cryptography authenticator in response to a 
challenge. 
 

Synopsis int gscBsiSkiInternalAuthenticate( 
IN UTILCardHandle  hCard, 
IN unsigned char*  usAID, 
IN unsigned int  unAIDLen, 
IN unsigned char         ucAlgoID, 
IN unsigned char*  uszChallenge, 
IN unsigned int      unChallengeLen, 
OUT unsigned char*  uszCryptogram, 
OUT unsigned int*  punCryptogramLength); 

  
Parameters hCard:  Input parameter  

Card connection handle, from gscBsiUtilCardConnect() 
 
usAID:  Input parameter  

SKI AID value. 
 

unAIDLen:  Input parameter  
 SKI AID value length. 
 
ucAlgoID:  Input parameter  

Algorithm Identifier. In this version of the interoperability specification, 
the only algorithm supported for this operation is DES3_ECB, double key 
length, with an ID of “0x81”. 

 
uszChallenge:  Input parameter  

Challenge generated by the Application and submitted to the card.  
 

unChallengeLen:  Input parameter  
The length of the Challenge. In this version of the Interoperability 
Specification the challenge length is always 8 bytes. 

 
uszCryptogram:  Output parameter  

The cryptogram computed by the card. 
 
punCryptogramLength: Output parameter  
The length of the cryptogram computed by the card. The result of a DES 
computation is always 8 Bytes, BUT, some cards truncate the cryptogram so 
that skiInternalAuthenticate cannot be used to encrypt data. Also, this truncation 
makes the authentication protocol stronger. 

Return Codes PKI_OK  card present 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 49 

PKI_BAD_HANDLE  Unknown card handle 
 

 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 50 

Appendix B - GSC: Interface Definition – Card Edge Presentation  
 
Scope 
This document is part of the effort led by the GSA to achieve the definition of an 
interopeability standard for Basic Services offered by the Government Smart Cards. 
 
A first level of interoperability is defined to protect the Application consumming smart 
cards from the need to know about any specific smart card. This level is achieved by the 
BSI api and amounts to the “top” part of an SPS. 
 
A second level of interoperability is defined to allow smart cards to interoperate:the card-
edge interface. This level, allows any SPS provider to interoperate with any smart card 
that supports the card edge interface. 
 
This document presents the Card-Edge interface of the Government Smart Card.  

 
Limitations  
The proposed card-edge interface is an operational API and not a management API. It 
does not provide services like applet download or applet instantiation. It does not allow 
the changing of access conditions associated with each instance or each file, since access 
conditions are defined during the container creation. 
PIN management functions like Change PIN or Unlock PIN are not part of this API. 
The smart card is supposed to be already initialized: applets are downloaded and 
instantiated and the file system is created. 
 
Establishing these limitations is a balancing act since some services are in the gray area 
between usage and management, like PIN change by the cardholder, or the genefration of 
a key pair. Two criteria help to make a decision whether the service should be excluded 
from the interoperability specification or not: 
-Is it a rare operation? 
-Is it feasible or very difficult to define an interoperable method for this service? 
 
The fact that a service is excluded from the specification does not mean it is not required 
from a smart card system, it means only that for this service interoperability is not a 
requirement, or that it cannot be technically achieved, so that putting it in the 
specification would have the result that the specification would not guaranty that all 
implementations would inter-operate. 

 
Compatibility 
This Card-Edge specification can be implemented on reasonbaly well behaved File 
System Cards (with respect to ISO7816-4),  JAVACARD2.1, Smart Card for 
Windows 1.1, and MULTOS. 

 
Documents 
The following picture presents the tree of documents that define the standard. The 
outlined square defines the present document and its position within this tree. 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 51 

SPM Architecture Overview

Gsc BSI Provider Api 

Gsc
Card-Edge Interface
presentation

Gsc BSI-CE APDU setFile System Cards

VM Cards GscSKI CardEdge
API for VM cards

The Government Smart Card Interoperability Standard

GscGeneric Container Card-Edge
API for VM cards

Gsc PKI Card-Edge
API for VM cards

Gsc SPM test specification 

Documents describing the GSC Card-Edge Interface v1.0 
o The Government Smart Card Card-Edge Interface Presentation v1.0 
o The Employee Identification (ID) and Physical Access Interoperability Specification 

v1.0 
o The Common Access Card card-edge interface documents: 
o Government Smart Card Generic Container card-edge Application Programming 

Interface for VM cards V1.0 
o Government Smart Card PKI card-edge Application Programming Interface for VM 

cards V1.0 
o Government Smart Card SKI card-edge Application Programming Interface for VM 

cards V1.0 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 52 

The GSC Card-Edge Interface v1.0 
 
Definition of the GSC Card-Edge Interface 
The GSC cards-edge interface provides the basis allowing the cards to interoperate for 
the BSI services.  
The GSC card-edge interface is fully unambiguously described by: 
 
1.A Basic Data Model for the J.8 data, that specifies, 
?? the Internal TLV storage format of the J.8 data, 
?? the Tags assigned to each J.8 data item, 
?? a grouping of the data- item into a set of Containers  
?? fixed Access Control Rule to access these containers, 
?? the naming of those containers, 
?? on file system cards the containers are implemented as Transparent files under a GSA 

Dedicated File, 
?? on VM cards, the containers are implemented as instances of the Generic Container 

Applet. 
 
2.A basic set of cryptographic services, with the naming of the PKI and SKI 
cryptographic capabilities required for the BSI. 
 
3.A functional interface 
?? On file system cards, an arbitrary default set of ISO7816-4 and cryptographic 

APDUs. 
?? On VM cards, the APDU set of the Common Access Card. 
 
4.The concept of Capability Container to describe the way the implementation on the 
card differs from the model described above. 
 
Access Control Rules compact coding proposal 
The Access Control Rules that have been exposed so far in the BSI provider API are: 
?? Always: the corresponding service can be provided without restrictions 
?? PIN protected: the corresponding service can be provided only if its associated PIN 

code has been already verified 
?? External authenticate: the corresponding service can be provided only after a 

get_challenge APDU.  
?? External Authenticate then PIN : the two methods must be chained successfully 

before access to the service is granted. This allows the authentication of the 
Application AND of the user. 

?? External Authenticate or PIN : either one of the two control gives access to the 
service. This allows for a CardHolder validation when a PIN PAD is available and for 
an external authentication when no PINPAD is available. Or, this provides an 
Authentication method when the Application cannot be trusted to perform an external 
Authentication and to protect the external authentication key.  



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 53 

?? Secure Channel: the corresponding service can be provided through a Secure 
Channel managed by a card Secure Messaging layer that can be Open Platform,  DIN, 
and the ISO7816-4 Secure Messaging.  

?? Never: the corresponding service can never be provided. 
 
This acr can be represented in the following manner: 
 
acr ::= SEQUENCE{ --  
readAcr BIT STRING SIZE(4) -- The read access control rule, anibble 
 writeAc 
BIT STRING SIZE(4)– The write access 
 control rule, a nibble 
} 
Proposed values: 
 
Access Control Rule Read Write
Always 0 0 
PIN protected 6 6 
External authenticate 2 2 
External Authenticate then PIN 7 7 
External Authenticate or PIN 8 8 
Secure Channel 4 4 
Never 1 1 
 
Internal TLV format 
Each SIMPLE-TLV data object shall consist of 2 or 3 consecutive fields: 
 
The tag field T consists of a single byte encoding only a number from 1 to 254. No class 
or construction types are coded. 
 
The length field consists of 1 or 3 consecutive bytes. If the leading byte of the length field 
is in the range from ‘00’ to ‘FE’, then the length field consists of a single byte encoding 
an integer L valued from 0 to 254. If the leading byte is equal to ‘FF’, then the length 
field continues on the two subsequent bytes which encode an integer L with a value from 
0 to 65,535. 
 
If L is not null, then the value field V consists of L consecutive bytes. If L is null or if a 
tag is omitted from its file/buffer, then the data object is empty: there is no value field for 
that tag. 
 
Card Identifier compact naming proposal 
Any card compliant with this specification must receive a unique identifier, attributed by 
the GSA. 
The Identifier must at least provide the type of the card : 
 
CardUniqueIdentifier ::= SEQUENCE 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 54 

{ 
 gsa-rid   OCTET STRING SIZE (5) -- 5 bytes OBJECT 
IDENTIFIER, 
ManufacturerID BIT STRING SIZE(8)– a unique manufacturer identifier 
cardType CHOICE { 
  fileSystemCard  BIT STRING SIZE(8) ::= 0 
  javaCard   BIT STRING SIZE(8) ::= 1 
  scpw   BIT STRING SIZE(8) ::= 2 
  Multos   BIT STRING SIZE(8) ::= 3 
  …  
 } 
 cardID         STRING 
} 
 
PIN and CHV 
?? The PIN is defined as a system Personal Identification Number for applications 

external to the card. 
 

?? The CHV or CardHolder Verification, is the designation for the PIN used within the 
card to permit access to a particular file or buffer. 

 
Common Access ID Card Data Structure and Model 
 
Data Structure and Model 
The GSA Common Data Model will be contained within a single directory (DF) and 
designated by a single Application Identifier (AID). For cards supporting AID, it is the 
preferred method for selecting the application however a reference to the directory’s file 
identifier (FID) must be included in the card capabilities file for those cards that do not 
support AID. 
 
The Common Data Model is organized as 7 containers (files or buffers) holding a 
collection of SIMPLE-TLV data objects. The read access rules are defined in the table 
below however it is up to each agency to define the write/modify rules.  
 
Container compact naming proposal 
The standard method to access a service on a smart card is to select it with an AID. This 
is actually the only method that works with a JavaCard, and unfortunately it is not 
supported by most file system cards. 
Therefore, we introduce the concept of CardURL, which can be used to uniquely 
reference a service offered by the smart card.  
- In the context of a JavaCard the CardURL is an AID.  
- In the context of a File System card the Card URL must be interpreted in the 

following manner: 
 
GSAcurl ::= SEQUENCE   -- This is considered as an AID on a VM card and  

 -- must be interpreted for a file system card. 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 55 

{ 
 gsa-rid    OCTET STRINZG SIZE(5) -- 5 bytes OBJECT 
IDENTIFIER, 

cardApplicationType        ::= CHOICE { -- application type 
  J8data   BIT STRING SIZE(8) ::= 0   
  SKI   BIT STRING SIZE(8) ::= 1 
  PKI   BIT STRING SIZE(8) ::= 2 

SecureDataExtended BIT STRING SIZE(8) ::= 3 –secure storage 
application other than J.8 

CryptoSKIExtended BIT STRING SIZE(8) ::= 4 
CryptoPKIExtended BIT STRING SIZE(8) ::= 5 

  … 
 } 
 gsaDF   BYTE[2] --  

CHOICE { 
  KeyID  BIT STRING SIZE(16) 
  FileID   BIT STRING SIZE(16)  
 } 
 acr ::= SEQUENCE{ --  
  read  readAcr  -- see definition above 
  write  writeAcr 
 } 
} 
 
The following matrix contains the proposed FIDs for the J.8 containers for file system 
cards: 
 

File/Buffer Description FID 
Maximum 
Length 
(Bytes) 

Read Access Condition 

Capability DB00  Always 
General Information 2000 508 Always 
Protected Personal Information 2100 18 After Verify CHV 
Access Control 3000 48 Always 
Login 4300 140 After Verify CHV 
Card Information 5000 164 Always 
Biometrics – X.509 Certificate 6000 2012 Always 
PKI – Digital Signature Certificate 7000 3016 After Verify CHV 
 
Once the GSA-RID is known and the GSA-DF has been decided it becomes possible to 
attribute an unambiguous universal name to the containers, files and applets.  
 
Error Detection 
The trailing Data Object of each file/buffer will consist of an Error Detection Code 
(EDC) Object for the file. Either a LRC or CRC may be used. 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 56 

1. LRC:  The longitudinal redundancy check consists of one byte. Its value shall be such 
that the exclusive-oring of all the bytes of the block is null. (ISO7816-3). The tag for 
an LRC Object is FE. 

2. CRC The cyclic redundancy check consists of two bytes. For its value see ISO3309. 
The tag for an CRC Object is FD 

 
File/Buffer Formats & Tag Definitions  
 
General Information File / Buffer EF 2000 Always Read 

Data Element (TLV) Tag Type Max. Bytes 
First Name 01 Variable 20 
Middle Name 02 Variable 20 
Last Name 03 Variable 20 
Suffix 04 Variable 4 
Government Agency 05 Variable 30 
Bureau Name 06 Variable 30 
Agency Bureau Code 07 Variable 4 
Department Code 08 Variable 4 
Position/Title 09 Variable 30 
Building Name 10 Variable 30 
Office Address 1 11 Variable 60 
Office Address 2 12 Variable 60 
Office City 13 Variable 50 
Office State 14 Variable 20 
Office ZIP 15 Variable  15 
Office Country 16 Variable 4 
Office Phone 17 Variable 15 
Office Extension 18 Variable 4 
Office Fax 19 Variable 15 
Office Email 1A Variable 60 
Office Room Number 1B Variable 6 
Non-Government Agency 1C Fixed Text 1 
SSN Designator 1D Variable 6 
Error Detection Code FE LRC 1 
 
 
Protected Personal Information File / Buffer EF 2100 CHV Verify 

Data Element (TLV) Tag Type Max. Bytes 
Social Security Number 20 Fixed Text 9 
Date of Birth 21 Date (YYYYMMDD) 8 
Gender 22 Fixed Text 1 
Error Detection Code FE LRC 1 
 
 
Access Control File / Buffer EF 3000 Always Read 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 57 

Data Element (TLV) Tag Type Max. Bytes 
SEIWG Data 30 Fixed  40 
PIN 31 Fixed Numeric 10 
Domain ( Facility / System ID ) 32 Variable 8 
Error Detection Code FE LRC 1 
 
 
Login Information File / Buffer EF 4000 CHV Verify 

Data Element (TLV) Tag Type Max. Bytes 
User ID 40 Variable 60 
Domain 41 Variable 60 
Password 42 Variable 20 
Error Detection Code FE LRC 1 
 
 
Card Information File / Buffer EF 5000 Always Read 

Data Element (TLV) Tag Type Max. Bytes 
Issuer ID 50 Variable 32 
Issuance Counter 51 Variable 4 
Issue Date 52 Date (YYYYMMDD) 8 
Expiration Date 53 Date (YYYYMMDD) 8 
Card Type 54 Variable 32 
Demographic Data Load Date 55 Date (YYYYMMDD) 8 
Demographic Data Expiration Date 56 Date (YYYYMMDD) 8 
Card Security Code 57 Fixed Text 32 
Card ID AID 58 Variable 32 
Error Detection Code FE LRC 1 
 
 
Biometrics – X.509 Certificate File / Buffer EF6000 Always Read 

Data Element (TLV) Tag Type Max. Bytes 
Template 60 Variable 512 
Certificate   61 Variable  1500 
Error Detection Code FE/FD LRC / CRC  1 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 58 

 
PKI – Digital Signature Certificates File / Buffer EF 7000 CHV Verify 

Data Element (TLV) Tag Type Max. Bytes 
Certificate 70 Variable 3000 
Issue Date 71 Date (YYYYMMDD) 8 
Expiration Date 72 Date (YYYYMMDD) 8 
Error Detection Code FE/FD LRC / CRC (TBD) 1 
 
Reserved Container Tags 
Tags within the range of 00 through 9F are reserved for the Common Access ID Card 
data structure.  Agencies are free to utilize tags within the range of A0 through EF. 
 
Character Sets 
The Security Enterprise Integration Working Group (SEIWG) data element within the 
Access Control File container as required by the SEIWG specification will be of the 
Binary Coded Decimal (BCD) character set.  All other file containers and data elements 
will use the American Standards Code for Information Interchange (ASCII) character set. 
 
Card Capability 
The Architecture Subcommittee of the Government Smart Card Interoperability 
Committee has completed an analysis of the APDU-level interoperability issue.  The 
background information and opinions provided by the five primes are included in the 
Subcommittee's report dated June 23.  Based on this information, the Subcommittee has 
developed a model for the Government Smart Card Service Provider Module (GSC-
SPM). 
 
APDU A Card Capability Container is included for each card that contains a compact 
description of the differences between the card’s APDU set and usage of the J.8 model, 
and the default APDU set and the J.8 model. Once the Card Capability Container is 
processed, the SPM can configure itself to interface with the card and execute the most 
important commands to achieve a minimum level of interoperability.  
The Card capability Container is implemented as a Transparent File on a file system 
card and as an instance of the Generic Container applet on a VM card. 
 
The absence of a Capability Container on a card means complete compliance with the 
default APDU set and with the J.8 model. 
 
The Card Capability Container allows interoperability between a broad range of cards 
without the problems and costs associated with configuration management techniques 
used in the past. As an interesting side-effect, the proposed framework can be used for 
extended services and make them,  
1> easier to implement, 
2> easier to make interoperate when it becomes a need. 
 
The Capability model offers two level of flexibility to handle variance with nominal J.8. 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 59 

Container Level Flexibility 
An Agency might decide that the Container as defined by nominal J.8 are suitable for the 
Agency’s requirements, except for the Access Control Rules (for example, replacement 
of the ALWAYS acr by an EXTERNAL AUTHENTICATE acr for read access to a 
container). 
In such a case, the CardURL of the container is indicated in the Capability Container with 
its specific ACR. 
And the BSI provider can provide the information to the application so that the 
application can establish the Security Context required by the Container, and this without 
breaking the J.8 compatibility. 
 
Tag Level Flexibility: redirection Tag 
In the case an Agency decides that a specific subset of Tags need a particular Security 
Context and that a specific access control rule should be enforced, it is possible to create 
a Container for this set of Tags. 
A special Tag is added to J.8, the redirection Tag. This Tag can be used to indicate to the 
BSI Provider which J.8 Tags are being “redirected” to the Container. 
The “value” part of the TLV for this redirection Tag can be described as follow: 
 
Redirection_value ::= SEQUENCE { 
 Container GSAcurl 
 SEQUENCE OF { 
  Tags BYTE --  The “redirected Tags”  
 } 
 … 
} 
 
A J8 Container can have any number of “redirection flags” to handle Tag level 
exceptions to the J8 nominal model. 

Accessing the capability file 

The Capability Container is the main instrument of interoperability provided by the 
specification. There should therefore be a agreed upon method to access it. On VM card 
the accessibility is immediate once the AID of the container is known. On file system 
cards however a heuristic needs to be agreed upon. 
  



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 60 

The provider implementing Card-Edge will attempt different APDUs until it eventually 
completes the reading of the capability file. 
The sequence is composed of: 
1>- the select MF 
2>- the select capability file EF 
3>- the read_binary of the file 
 
Hereafter, an interoperable procedure that should be applied to the capability file: 
 
Universal Procedure for Selecting EF file under a DF. 
1. Send command APDU as follows to select MF: 
 

CLA INS P1 P2 P3 FIDH FIDL 
TEST CLA A4 00 00 02 3F 00 

 
The TEST CLA byte we use for our subset of cards are: 00, C0,F0,80,BC,01.  
(Additional test values for CLA are: 0X,8X,9X,AX,B0-CF.) 
 
2. Wait for Status bytes. If Status Bytes are “6E00”, Class is not supported. Loop back 

and attempt another CLA.  
 
3. If Status Bytes are “9000” or “61XX”, correct command structured and CLA 
 
4. If Status Bytes are none of the above, set P2=0C and repeat steps 1 through 3.  
5. Once CLA has been determined, select DF under MF 
 

CLA INS P1 P2 P3 FIDH FIDL 
Determined 

CLA A4 00 P2 02 DFID
H 

DFID
L 

 
6. If Status Bytes return error codes (va lues other than “9000” or “61XX”, set  P1=01.  
7. To select a EF under a selected DF: 
 

CLA INS P1 P2 P3 FIDH FIDL 
Determined 

CLA 
A4 00 P2 02 EFID

H 
EFID

L 
 
8. If Status Bytes return error codes (values other than “9000” or “61XX”, set P1=02.  
9. To Read a binary file with no secure messaging, use the following APDU: 
 

CLA INS P1 P2 P3 
Determined 

CLA  B0 Off/H Off/L L 

 
Note P1 and P2 are offset to start reading from. L is length of data to read. 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 61 

Card Capability File Grammar 
The GSA Card Capability File will be contained in the Master Directory (3F00) and 
designated by the Capabilities Application Identifier (AID: GSA-RID||DB00) as well 
as the FID: DB 00 
 
The Card Capabilities File consists of a collection of SIMPLE-TLV data objects. It will 
be configured for ALWAYS READ however it is up to each agency to define the 
write/modify rules. 
 

File/Buffer Format & Tag Definitions  

 
Card Capabilities File EF DB00 Always Read 
Data Element (TLV) Tag Type 
Card Identifier F0 Fixed-tbd 
Capability File version F1 Fixed-tbd 
Capability Grammar version F2 Fixed-tbd 
Applications CardURL F3 Variable – Multiple Objects 
Redirection Tag FA Variable 
Capability Tuples  (CT’s) FB Variable: Collection of 2 Byte Tuples 
Status Tuples (ST’s) FC Variable: Collection of 2 Byte Tuples 
Optional Issuer Objects Issuer Def Variable 
Error Detection Code FE LRC 
 
The Card Identifier will be a code specified by the GSA for each card type. It should 
include critical card parameters such as max buffer size and supported encryption 
algorithms and key lengths. 
 
The Card Capabilities File may contain multiple instances of the Application AID tags. 
They can be assembled into a list of the applications, including FID’s and paths, Key 
Identifiers and Access Control Methods, which are supported by the card. 
 
The Card Capabilities File will contain a single Capability Tuple (CT) object, which 
consists of a collection of two byte tuples, which define the capabilities, formats and 
procedures supported by the card. The GSA will define a default set of capability tuples 
that represent a generic implementation of the ISO 7816 standard. It will only be 
necessary to include CT’s to indicate a variance between the cards capabilities and the 
default set. 
 
The Card Capabilities File may contain a single Status Tuple (ST) object, which consists 
of a collection of three byte tuples, which define the possible status codes for each 
function. It will only be necessary to include ST’s which deviate between the cards status 
codes and the status codes defines in ISO 7816-4. 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 62 

The card issuer may include additional TLV objects in the Card Capabilities File for 
application specific purposes. These are not needed for interoperability but may be used 
to facilitate extended applications. They may be ignored by any implementation without 
affecting interoperability. Any optional objects that are not recognized will be ignored. 
 
Capability Tuple Construction 
Capability Tuples will consist of two bytes, labeled C and V, which describe the details 
of a particular function. They are formatted as follows: 
 
APDU 
 
 

C  
1.1.1.1.1.1 V 

7 6 5 4 3 2 1 0  7 6 5 4 3 2 1 0 

0= Const  If C bit 7 = 0 Then V contains a constant 
value 

1= Desc 
Parameter Function Code 

 If C bit 7 = 1 Then V contains a Descriptor 
code 

 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 63 

 
Function Codes 

00 Reserved 
01 Select File 
02 Transparent Read (Binary) 
03 Update Binary File 
04 Update Binary File ( Secure Messaging) 
05 RSA Compute 
06 Get Challenge 
07 Get Response 
08 Verify PIN (CHV) 
09 Internal Authenticate 
0A External Authenticate 
0B RFU 
0C Select KEY 
0D Card Specific 1 
0E Card Specific 2 
0F Card Specific 3 

 
 
 

Parameter Codes 
00 DATA 
01 CLA 
02 INS 
03 P1 
04 P2 
05 P3 
06 Prefix 
07 Suffix 

 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 64 

 
Descriptor Codes  

00 – 0F Execute Function Code ( using specified 
parameters) 

11 Challenge 
12 Algorithm Identifier (e.g. Crypto Mode ) 
13 6 MSB of Cryptogram 
14 3 LSB of Cryptogram 
15 Length 
16 MSB of Offset 
17 LSB of Offset 
18 Key Level  
19 Key Identifier 
1A CHV Level 
1B CHV Identifier 
1C AID 
1D EF 
1E SID 
1F TBD 

 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 65 

Status Tuple Construction 
 
Status Tuples will consist of three bytes, labeled S, SW1 and SW2, which describe the 
possible status conditions for each function. Multiple sets of SW1 and SW2 may translate 
into a single Status Condition. 
The purpose of the Status Tuples is to map a card’s non-standard status response SW1 & 
SW2 into a common set of status conditions for a given function. It is not mandatory to 
list any status conditions which confo rm with ISO-7816. 
 
 

S  
1.1.1.1.1.2 SW 

7 6 5 4 3 2 1 0  
 

Status Condition Function Code 
 

SW1 SW2 

 
 

 
 

Status Condition 
00 Successful Completion 
01 Successful Completion – Warning 1 
02 Successful Completion – Warning 2 
03 Reserved 
04 Reserved 
05 Reserved 
06 Reserved 
07 Reserved 
08 Access Condition not Satisfied 
09 Function not Allowed 
0A Inconsistent Parameter 
0B Data Error 
0C Wrong Length 
0D Function not compatible with file structure 
0E File/Record not Found 
0F Function Not Supported 

 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 66 

Appendix C - GSC: Interface Definition – Card Edge for File System Cards  
 
Scope 
This document is part of the effort led by the GSA to achieve the definition of an 
interopeability standard for Basic Services offered by the Government Smart Cards. 
 
A first level of interoperability is defined to protect the Application consumming smart 
cards from the need to know about any specific smart card. This level is achieved by the 
BSI api and amounts to the “top” part of an SPS. 
 
A second level of interoperability is defined to allow smart cards to interoperate:the card-
edge interface. This level, allows any SPS provider to interoperate with any smart card 
that supports the card edge interface. 
 
This document presents the Card-Edge interface of the Government Smart Card.  
 
Limitations  
The proposed card-edge interface is an operational API and not a management API. It 
does not provide services like applet download or applet instantiation. It does not allow 
the changing of access conditions associated with each instance or each file, since access 
conditions are defined during the container creation. 
PIN management functions like Change PIN or Unlock PIN are not part of this API. 
The smart card is supposed to be already initialized: applets are downloaded and 
instantiated, file system is created, etc…. 
 
Establishing these limitations is a balancing act since some services are in the gray area 
between usage and management, like PIN change by the cardholder, or the genefration of 
a key pair. Two criteria help to make a decision whether the service should be excluded 
from the interoperability specification or not: 
-Is it a rare operation? 
-Is it feasible or very difficult to define an interoperable method for this service? 
 
The fact that a service is excluded from the specification does not mean it is not required 
from a smart card system, it means only that for this service interoperability is not a 
requirement, or that it cannot be technically achieved, so that putting it in the 
specification would have the result that the specification would not guaranty that all 
implementations would inter-operate. 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 67 

Documents 
The following picture presents the tree of documents that define the standard. The 
outlined square defines the present document and its position within this tree. 

SPM Architecture Overview

Gsc BSI Provider Api 

Gsc
Card-Edge Interface
presentation

Gsc BSI-CE APDU setFile System Cards

VM Cards Gsc SKI CardEdge
API for VM cards

The Government Smart Card Interoperability Standard

Gsc Generic Container Card-Edge
API for VM cards

Gsc PKI Card-Edge
API for VM cards

Gsc SPM test specification 

Introduction 
The present document defines the default functional interface of File System cards: 
?? An arbitrary default set of ISO7816-4 and cryptographic APDUs 
 
The Capability file described in other Card-edge specification documents provides a 
formalism that allows to describe how the interface of a specific file system card differs 
from this default. 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 68 

Definition 
 

Proposed GSA Default APDU Set  
Card Type CLA INS P1 P2 P3 Data Notes 

Select DF File under MF 00 A4 01 00 L (02) File ID (2 Bytes)  

Select EF File under selected DF 00 A4 02 00 L (02) File ID (2 Bytes) See Note 1 

Read Binary (Transparent) 00 B0 Off/H Off/L L Response AC must be fulfilled 

Read Binary (Transparent)- Secure 
Messagi 

04 B0 Off/H Off/L L+03 Plain Data +Crypto See Note 2  
(pre –APDU SelFk) 

Update Binary (Normal) 00 D6 Off/H Off/L L Data to Update AC must be fulfilled 

Update Binary (Secure Msg) 04 D6 Off/H Off/L L+03 Plain Data + 
Cryptogram 

See Not e 3 

Internal Authenticate 00 88 AI KN L(08) 8 byte challenge 
See Note 4  
(pre-Verify CHV)  
(post-Get Response) 

Get Response 00 C0 00 00 L Data to retrieve See Note 5 

Get Challenge 00 84 00 00 L (08) 8 byte challenge from 
card 

See Note 6 

Verify CHV 00 20 00 CHV L (08)  See Note 7 

Change CHV/PIN 00 24 00 CHV L (10)  See Note 8 

External Authenticate 00 82 00 Key # L (06) See Note 9  

RSA Compute 80 42 00 Key # L Message to 
sign/decrypt 

 

 
Notes: 
1 P1 specifies selection type: EF with short file identifier (=00), select DF (=01), EF 

under currently select DF (=02), parent DF (03), DF by its name. P2 specifies 
response required (=00) or no response required (=C0). L is data field length and 
depends on selection type. For short file selection, L=2. Data is short file identifier or 
name 

2 For secure messaging CLA=04. Data is read in plaintext but a cryptogram (3 Most 
Significant Bytes) is appended to it. Data is padded with 0’s. Encryption is 3DES 
with temporary administration key. SelFK command must be executed before. 

3 X consists in the 3 Least significant Bytes of the Cryptogram. Use SelFk to get 
temporary administration key before command and GetResponse after command to 
obtain  3 Most Significant Bytes of Cryptogram to optionally verify card checksum. 
Data is padded with 0’s so that it is a multiple of  8. Encryption is 3DES based. 

4 AI (Algorithm ID) selects DES (=00) or 3DES (=02), 512 RSA (=C5), 768 RSA 
(=C7), or 1024 RSA (=C9). Command is preceded by Verify CHV and followed by 
Get Response. No info about size of returned cryptogram. 

5 Length parameter depends on previous command issued to card. 
6 Number lost if card reset, unsuccessful Get Challenge, External Authenticate 
7 CHV specifies 01 to 0F, if key. Use 10 if CHV 
8 CHV/PUB/Key number: 01 to 0F if Key; 10 if CHV; 11 if PUK 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 69 

9 Key # is from 01 to 0F. Data is 6 MSB of cryptogram from standard DES/ 3DES 
encryption of random challenge. 

 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 70 

Appendix D - GSC: Interface Definition – Card Edge for Virtual Machine Cards  
 
Scope 
This document is part of the effort led by the GSA to achieve the definition of an 
interopeability standard for Basic Services offered by the Government Smart Cards. 

 
A first level of interoperability is defined to protect the Application consumming smart 
cards from the need to know about any specific smart card. This level is achived by the 
BSI api and amounts to the “top” part of an SPS. 

 
A second level of interoperability is defined to allow smart cards to interoperate: the 
card-edge interface. This level, allows any SPS provider to interoperate with any smart 
card that supports the card edge interface. 

 
This document  is a Card-Edge Interface document and describes the services and the 
interfaces of the Generic Container Applet at the APDU level. The Generic Container 
Applet is already used by the Common Access Card. This card edge interface will allow 
application developers: 
?? To make use of the existing instances of the GCA, to exploit, for example, the 

demographics data,  
?? To operate their own instance of the GCA. 

 
This applet card-edge specification represents an attempt to minimize the size of the code 
on the card while providing the required flexibility. Furthermore, the specification 
represents an attempt to define an interoperable feature set.  

 
Finally it is to be noted that this specification describes a feature set that goes beyond 
what is required for the GSC. 
 
Limitations  
The proposed card-edge interface is an operational API and not a management API. It 
does not provide services like applet download or applet instantiation. It does not allow 
the changing of access conditions associated with each instance or each file, since access 
conditions are defined during the container creation. 
Furthermore, PIN management functions like Change PIN or Unlock PIN are not part of 
this API.  
The smart card is supposed to be already initialized: applets are downloaded and 
instantiated, file system is created, etc…. 
 
Establishing these limitations is balancing act since some services are in the gray area 
between usage and management, like PIN change by the cardholder. Two criteria help to 
make a decision whether the service should be excluded from the interoperability 
specification or not: 
-Is it a rare operation? 
-Is it feasible or very difficult to define an interoperable method for this service? 

 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 71 

The fact that a service is excluded from the specification does not mean it is not required 
from a smart card system, it means only that for this service interoperability is not a 
requirement, or that it cannot be technically achieved, so that putting it in the 
specification would have the result that the specification would not guaranty that all 
implementations would inter-operate. 
 
Compatibility 
This Card-Edge specification can be implemented on JAVACARD2.1, Smart Card for 
Windows 1.1, and MULTOS. 
 
Documents 
The following picture presents the tree of documents that define the standard. The 
outlined square defines the present document and its position within this tree. 

SPM Architecture Overview

Gsc BSI Provider Api 

Gsc
Card-Edge Interface
presentation

Gsc BSI-CE APDU setFile System Cards

VM Cards Gsc SKI CardEdge
API for VM cards

The Government Smart Card Interoperability Standard

Gsc Generic Container Card-Edge
API for VM cards

Gsc PKI Card-Edge
API for VM cards

Gsc SPM test specification 

 
Presentation of the Generic Container Applet 
The Generic Container Applet offers a basic size-effective platform to provide protected 
data services to applications. It allows the management of 2 buffers and a rich access 
control to these buffers.  

 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 72 

The intent is to allow the proxy application on the terminal to proceed to a discovery of 
the Access Control Rules for accessing the two buffers with a GET PROPERTIES 
APDU. 
 
Then, in general after fulfilling a weak Access Control Rule, the application reads the 
first buffer containing a list of {Tag, Length} data items.  
 
 
At this point the application knows whether the data it operates on, is managed by this 
Applet instance and can then proceed to access the second buffer, that contains a list of 
{Value} data items, to read it or update it, after fulfilling the required Access Control 
Rule. 
 
 In the rest of the document, the buffers are referred to as: 
TAG, or T-buffer providing  secure storage for the Tag and value’s length 
VALUE, or V-buffer providing secure storage for the values in sequence. 
 
To get the value associated to the tag, it is necessary to read all the {tag, Length} in the 
T-buffer and to compute the length of the associated value. The result gives the offset in 
the V-buffer to read the associated value. 
 
This applet specification has been designed to provide an interface compatible with the 
Common Access Card Demographics information, the GSA J.8 data, the data needed by 
physical access control systems, as well as data-based extended services such as health 
data storage, certification and training data, rostering, property management, including 
the storage and retrieval of biometric templates. 
 
The Access Control configuration options include PIN verification, external 
authentication 3, external authentication then PIN verification, external authentication or 
PIN, for read and update. 
 
Two distinct Key sets are used to protect the read access and the update access. 
 
Next versions  
The basic platform described in this document can be enriched considerably, but this will 
cost space on the card. Very useful features to add would be: 
Update and remove commands atomicity. 
Internal TLV parsing. 
 
Unfortunately, these “active” applet services would break the basic compatibility with 
fiule system cards, that the applet provides in the current state of the specification. 

                                                 
3 To start a transaction with the applet, a get_challenge APDU is sent to the applet. The 
applet returns a challenge. A cryptogram is computed with the challenge and the applet 
can then authenticate the host by verifying the cryptogram sent by the External 
Authenticate .  



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 73 

 
Security 
The design relies heavily on a subset of Open Platform 2.0 1 security mechanisms, 
addressed by security domains, for the loading, the instantiation, and the initialization of 
the security parameters of the applet. 
These services are not exposed by the present specification, which focuses exclusively on 
usage. 
A function offered by an applet is called a service (for example: read the T-Buffer or 
update the V-buffer, or, signature, decryption for a PKI applet). 
The granularity of control is the service control. That means that there is one control level 
by object operated by the applet and by service. 
This control level is defined at the instantiation of the applet. It remains the same for all 
the credential life. 

 
The different control levels are the following: 
?? Always: the corresponding service can be provided without restrictions 
?? PIN protected: the corresponding service can be provided only if its associated PIN 

code has been already verified 
?? External authenticate: the corresponding service can be provided only after a 

get_challenge APDU.  
?? APDU9898.  
?? External Authenticate then PIN : the two methods must be chained successfully 

before access to the service is granted. This allows the authentication of the 
Application AND of the user. 

?? External Authenticate or PIN : either one of the two control gives access to the 
service. This allows for a CardHolder validation when a PIN PAD is available and for 
an external authentication when no PINPAD is available. Or, this provides an 
Authentication method when the Application cannot be trusted to perform an external 
Authentication and to protect the external authentication key.  

?? Secure Channel: the corresponding service can be provided through a Secure 
Channel managed by the card Open Platform layer. This control is used only for 
administrative operations that are not covered by this specification. 

?? Never: the corresponding service can never be provided. 
 

For all services, three levels of access control are defined: 
?? Level1, 
?? Level2, 
?? Level3. 

 
At applet instantiation phase, for any services provided by the applet, a level has to be 
chosen.  
 
Cryptographic requirements 
This applet requires from the Card Operating System the availability of the following 
algorithms:  



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 74 

DES3 ECB, double length key (16 Bytes). 
 
Supported APDUs 
UPDATE BUFFER (to update a buffer) 
READ BUFFER (to read a buffer) 
GET PROPERTIES (to retrieve applet instance properties from the card) 
GET CHALLENGE (to retrieve a challenge from the card to perform a host 
authentication) 
EXTERNAL AUTHENTICATE (to send to the card a cryptogram identifying host) 
PIN VERIFY (to perform PIN verification and to check if the PIN has been already 
verified). 

 
General Error Conditions  
The following error conditions may be returned by any of the commands hereafter 
described: 

 
Status Meaning 
6200h Applet or instance logically deleted 
6581h Memory failure 
6700h Incorrect parameter Lc 
67LLh Wrong length in Le parameter, the ‘LL’ value is 

expected 
6982h Security status not satisfied 
6985h Conditions of use not satisfied 
6A80h Invalid data in command Data Field 
6A84h Insufficient memory space to complete command 
6A86h Incorrect P1 or P2 parameter 
6A88h Referenced data not found 
6D00h Unknown instruction given in the command 
6E00h Wrong class given in the command 
6F00h Technical problem with no diagnostic given 
9000h Normal ending of the command 
 

 
Access Control Configurations  
Several security parameters can be defined according to the following table. These 
parameters are defined at the instantiation phase as described in the next chapter. 
 

Global 
Service 

Always PIN  Extern 
auth. 

Extern 
auth. 
 Then 
 PIN 

Extern 
Auth 
. or  
PIN 

Secure 
Channel 

Never 

Level1  X X X X X X X 
Level2 X X     X 
Level3 X X X X X X X 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 75 

 
The association between the APDUs (described later in the document) and the services is 
accorded to this table: 

 
Service Global service 

Update T- buffer Level1 
Read  T-buffer  Level2 
Update  V- buffer Level1 
Read  V-buffer  Level3 
 

Only level 1 and level 3 operations can be protected by an external authentication. The 
authentication key as to be stored in a key set ( see VOP definition of a key set). The 
associated key for controlling the access to level 1 operation must have a key-set version 
equal to 1. Also, to protect level 3 operations, the associated key needs to be stored in a 
key-set that has a key-set version set to 3. 
 
For information, other APDUs have a fixed access control set to: 

 
Service Security level 

Get Properties  Always 
Put Key Secure 

channel 
Get challenge Always 
External authenticate Always 
Pin Verify Always 
 

Security levels are coded as follows in applets: 
 

Security level Value 
Always 0 
Never 1 
External authenticate 2 
External authenticate 
then PIN 

3 

Secure channel 4 
Update Once 5 
PIN protected 6 
External authenticate 
or PIN 

7 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 76 

Generic Container Applet APDU interface 
 
UPDATE BUFFER 
This command allows updating a part of, or the totality of a buffer. 
 
Command message  
The Update static buffer command message is coded according the following table: 
 

CLA 90h  
INS 58h 
P1 Reference Control Parameter P1 
P2 Reference Control Parameter P2 
Lc Length of data + 1 

Data Field Buffer type + data to be updated 
Le Empty 

 
Reference control parameter P1/P2 
The reference control parameters P1 and P2 are used to store the offset from which data 
are to be written. 
 
Data field sent in the command message  
The first byte of the data field is used to indicate which buffer is to be updated.  
The possible values are: 
?? 01h  

T-buffer 
?? 02h  

V-buffer 
 

The other bytes correspond to the data to be updated. 
 
Response message  
Data field returned in the response message 
The data field in the response message is always empty. 
 
Processing state returned in the response message 
 
Status Meaning 
6981h No corresponding buffer 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 77 

READ BUFFER 
 
Introduction 
This command allows reading a part of, or the totality of a buffer. 
 
Command message  
The Read buffer command message is coded according the following table: 
 

CLA 90h (whatever the access conditions are) 
INS 52h 
P1 Reference Control Parameter P1 
P2 Reference Control Parameter P2 
Lc 01h + 01h 

Data Field Buffer type + data length to read 
Le Empty 

 
Reference control parameter P1/P2 
The reference control parameters P1 and P2 are used to store the offset from which data 
are to be read. 
 
Data field sent in the command message  
The data field is used to indicate which buffer is to be read.  
The possible values are: 
?? 01h  

T-buffer 
?? 02h  

V-buffer 
 

Response message  

Data field returned in the response message 

The data field in the response message corresponds to the data read from the card, 
according to the P1 parameter. 
 
Processing state returned in the response message 
 
Status Meaning 
6981h No corresponding buffer 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 78 

GET PROPERTIES 
 
Introduction 
This command is used to retrieve applet instance properties.  
Command message 
 
The Static Get properties command message is coded according the following table: 
 

CLA 80h 
INS 56h 
P1 00h 
P2 00h 
Lc 00h 

Data Field Empty 
Le Expected applet instance properties length 

 

Response message 

Data field returned in the response message 

The Data fields returned in the response message contain the following properties with 
their current value: 
 
?? Applet family (1 byte) 
?? Applet version (4 bytes) 
?? Level1 access control/ Level2 access control (1 byte) 
?? Level3 access control/ RFU (1 byte) 
?? RFU byte 
?? RFU byte 
?? ID-applet AID length (1 byte) 
?? ID-applet AID (16 bytes padded with 0) 
?? Key Set Version (1 byte) 
?? Key Set Id (1 byte) 
?? T-Buffer length (2 bytes) 
?? V-Buffer length (2 bytes) 
?? X bytes RFU to complement to 46 bytes 
 
Processing state returned in the response message 
 
See General Error Conditions in this section. 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 79 

GET CHALLENGE 
 
Command description 
Each GCA applet instance can receive a Get challenge command, in order to perform a 
host authentication in the following sent command. 
This command has to be sent by host just before a External authenticate command, and 
corresponds to the first step of host authentication before sending a command having an 
external authenticate security level. 
The computed challenge is valid only in the APDU following the GET CHALLENGE 
APDU. 
 
Command message  
The Get challenge command message is coded according the following table: 
 

CLA 80h 
INS 84h 
P1  00h 
P2  00h 
Lc 00h 

Data Field Empty 
Le Challenge length (has to be 8 bytes) 

 

Response message  

Data field returned in the response message 

The response message contains the challenge used later for authentication.  
 
This challenge has to be memorized inside the applet instance, in order to calculate the 
corresponding response. If the response is not sent (using External Authenticate 
command) in the command following the Get Challenge command, the calculated 
challenge is then lost. 
 

Processing state returned in the response message 

 
See General Error Conditions in this section. 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 80 

EXTERNAL AUTHENTICATE 
 
Command description 
Just after receiving a card challenge from Get challenge command, a cryptogram is 
computed by the host using the 8-Bytes card challenge, and a special 16-Bytes 3DES key 
known by the host and the static applet (with the PUTKEY command). 
The cryptogram is the result of the 3DES algorithm with the appropriate key and the 
challenge as the input. 
 
The key used to protect the level 1 operation has a key set version set to 1. 
The key used to protect the level 3 operation has a key set version set to 3. 
 
The version of the key set must be specified in the command so the applet can know 
which keyset to use. 
 
The corresponding response is then sent to the card using External Authenticate 
command. 
 
This command has to be sent by host just before a command with an External 
authentication security level, and correspond to the second step of host authentication. 
Successful cryptogram verification is mandatory to perform the following command. 
 
If the command is not sent just after the Get challenge command, card challenge is then 
lost. 
 
The External authentication is only valid while still accessing the same security level. If 
the applet receives an APDU with a different security level, the access level is lost. 
This means that if the card is removed or if the applet is unselected, the access level is 
lost. 
 
Command message  
The external authenticate command message is coded according the following table: 
 

CLA 80h 
INS 42h 
P1  Keyset version 
P2  00h 
Lc 08h 

Data Field Host cryptogram 
Le Empty 

 

Data field sent in the command message  

Host cryptogram. 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 81 

Response message  

Success: 0x9000 
Access denied: 0x6982 

Data field returned in the response message 

 
The data field returned is always empty 

Processing state returned in the response message 

 
See General Error Conditions in this section.  
 
PIN VERIFY 
 
Commands description 
Each GC applet instance can receive a PIN Verify command, in order to verify a PIN 
code, or to check if a PIN code has been already verified or not. 
When receiving those commands, the selected instance forwards the information to the 
ID applet instance containing the PIN number specified in the command, through its 
shared functions. 
 
Command message  
The PIN Verify command message is coded according the following table: 
 

CLA 80h 
INS 20h 
P1 00h 
P2 00h 
Lc 00h or 08h 

Data Field PIN code to be verified 
Le Empty 

 
Data field sent in the command message  
If the data field sent in the command message does not include a PIN code, the command 
is corresponding to a PIN verify check command, in order to know if the PIN code has 
been already verified or not. 
 
If the data field includes the PIN code to be verified, the PIN code value is corresponding 
to the 8 first bytes of the data field, coded as described in the 3.1.2.4 chapter. 
 
o If the verification fails, the left PIN tries flag is decremented, and the PIN verified 

flag value does not change. The PIN always flag value is set to 00h. If the left PIN 
tries flag value is 00h, the PIN code is considered as locked. 

o If the verification succeeds, the PIN verified flag value, and the PIN always flag value 
are set to 01h. 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 82 

 
If P2 =01h, the AID of the ID applet instance containing the PIN code to be verified or 
checked is stored just after the PIN code to verify, or at the beginning of the data field if 
the command corresponds to a PIN verified check command. 

Response message  

Data field returned in the response message 

The data field in the response message is always empty. 

Processing state returned in the response message 

 
If PIN verification or PIN verified checking fails, the status code returned is SW1 = 63h, 
SW2 = left PIN tries. 
SW2 = FFh means infinite tries. 
 
Status Meaning 
63LLh PIN verify rejected and left PIN tries are ‘LL’ 
6981h No PIN code defined 
6983h PIN code blocked 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 83 

 
Appendix E - GSC: Interface Definition - SKI for VM Cards 
  
Scope 
This document is part of the effort led by the GSA to achieve the definition of an 
interopeability standard for Basic Services offered by the Government Smart Cards. 

 
A first level of interoperability is defined to protect the Application consumming smart 
cards from the need to know about any specific smart card. This level is achieved by the 
BSI api and amounts to the “top” part of an SPS. 
 
A second level of interoperability is defined to allow smart cards to interoperate: the 
card-edge interface. This level, allows any SPS provider to interoperate with any smart 
card that supports the card edge interface. 
 
This document is a Card-Edge Interface document and describes the services and the 
interfaces of the SKI Applet at the APDU level.  
 
This applet card-edge specification represents an attempt to minimize the size of the code 
on the card while providing the required flexibility. Furthermore, the specification is 
voluntarily reduced to the kind of features that can be also expected from a card without a 
VM, and represents an attempt to define a feature set interoperable with this type of 
cards, while not sacrificing the efficiency of the VM card. 

 
Limitations  
The proposed card-edge interface is an operational API and not a management API. It 
does not provide services like applet download or applet instantiation. It does not allow 
the changing of access conditions associated with each instance or each file, since access 
conditions are defined during the container creation. 
PIN management functions like Change PIN or Unlock PIN are not part of this API. 
The smart card is supposed to be already initialized: applets are downloaded and 
instantiated, and the file system is created. 

 
 

Establishing these limitations is a balancing act since some services are in the gray area 
between usage and management, like PIN change by the cardholder, or the genefration of 
a key pair. Two criteria help to make a decision whether the service should be excluded 
from the interoperability specification or not: 
-Is it a rare operation? 
-Is it feasible or very difficult to define an interoperable method for this service? 

 
The fact that a service is excluded from the specification does not mean it is not required 
from a smart card system, it means only that for this service interoperability is not a 
requirement, or that it cannot be technically achieved, so that putting it in the 
specification would have the result that the specification would not guaranty that all 
implementations would inter-operate. 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 84 

 

Compatibility 

This Card-Edge specification can be implemented on JAVACARD2.1, Smart Card for 
Windows 1.1, and MULTOS. 

 
Documents 
The following picture presents the tree of documents that define the standard. The 
outlined square defines the present document and its position within this tree. 

SPM Architecture Overview

Gsc BSI Provider Api 

Gsc
Card-Edge Interface
presentation

Gsc BSI-CE APDU setFile System Cards

VM Cards Gsc SKI CardEdge
API for VM cards

The Government Smart Card Interoperability Standard

Gsc Generic Container Card-Edge
API for VM cards

Gsc PKI Card-Edge
API for VM cards

Gsc SPM test specification 

 
Presentation of the SKI Applet 
This applet is responsible for DES and 3DES based operations. It can be used to perform 
user authentication based on a shared secret key.  

 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 85 

Security 
The design relies heavily on a subset of Open Platform 2.0 1.b security mechanisms, 
addressed by security domains, for the loading, the instantiation, and the initialization of 
the security parameters of the applet. 
These services are not exposed by the present specification, which focuses exclusively on 
usage. 
A function offered by an applet is called a service (for example: signing a message). 
The granularity of control is the service control. That means that there is one control leve l 
by object operated by the applet and by service. 
This control level is defined at the instantiation of the applet. It remains the same for all 
the credential life. 
 
The different control levels are the following: 
Always: the corresponding service can be provided without restrictions 
PIN protected: the corresponding service can be provided only if its associated PIN code 
has been already verified 
External authenticate: the corresponding service can be provided only after a 
get_challenge APDU.  
Never: the corresponding service can never be provided. 
 
For all services, three levels of access control are defined: 
Level1, 
Level2, 
Level3. 
 
At applet instantiation phase, for any services provided by the applet, a level has to be 
chosen.  
Cryptographic requirements 
This applet requires from the Card Operating System the availability of the following 
algorithms:  
DES ECB, 8 bytes key. 
DES3 ECB, double length key (16 Bytes). 
Supported APDUs 
INTERNAL AUTHENTICATE (to sign a challenge with the authentication key) 
GET PROPERTIES (to retrieve applet instance properties from the card) 
GET CHALLENGE (to retrieve a challenge from the card to perform a host 
authentication) 
EXTERNAL AUTHENTICATE (to send to the card a cryptogram authenticating the 
host) 
PIN VERIFY (to perform PIN verification and to check if the PIN has been already 
verified). 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 86 

General Error Conditions  
The following error conditions may be returned by any of the commands hereafter 
described: 

 
Status Meaning 
6200h Applet or instance logically deleted 
6581h Memory failure 
6700h Incorrect parameter Lc 
67LLh Wrong length in Le parameter, the ‘LL’ value is 

expected 
6982h Security status not satisfied 
6985h Conditions of use not satisfied 
6A80h Invalid data in command Data Field 
6A84h Insufficient memory space to complete command 
6A86h Incorrect P1 or P2 parameter 
6A88h Referenced data not found 
6D00h Unknown instruction given in the command 
6E00h Wrong class given in the command 
6F00h Technical problem with no diagnostic given 
9000h Normal ending of the command 
 

 
Access control configurations  
Several security parameters can be defined according to the following table. These 
parameters are defined at the instantiation phase as described in the next chapter. 

 
Global Service Alway

s 
PIN  Exter

n 
auth. 

Never 

Level1  X X X X 
Level2     
Level3     
 

The association between the APDUs (described later in the document) and the services is 
accorded to this table: 

 
Service Level 

Internal Authenticate  Level 1 
RFU Level 2 
RFU Level 3 
 

 
 

For information, other APDUs have a fixed access control set to: 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 87 

 
Service Security level 

Get Properties  Always 
Put Key Secure 

channel 
Get challenge Always 
External authenticate Always 
Pin Verify Always 
 
 

Security levels are coded as follows in applets: 
 

Security level Value 
Always 0 
Never 1 
External authenticate 2 
PIN protected 6 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 88 

SKI Applet APDU interface 
 
INTERNAL AUTHENTICATE 
 
Introduction 
This command is used to perform a RSA signature or data decryption. 
 
Command message  
The Internal authenticate command message is coded according the following table: 
 

CLA 80h  (whatever the access control rules are) 
INS 42h 
P1 00h 
P2 00h 
Lc Challenge length (retrieved from a Get properties) 

Data Field Challenge 
Le 00h 

 
Data field sent in the command message 
The data field contains the data to be signed using the selected key. 
 
Response message  
 
Data field returned in the response message 
The data field in the response message contains the data signed. The length of the 
response may vary and depends on the configuration of the applet. 
 
Processing state returned in the response message 
See General Error Conditions in this section. 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 89 

GET PROPERTIES 
 
Introduction 
This command is used to retrieve applet instance properties.  
Command message 
 
The Static Get properties command message is coded according the following table: 
 

CLA 80h 
INS 56h 
P1 00h 
P2 00h 
Lc 00h 

Data Field Empty 
Le Expected applet instance properties length 

 

Response message  

Data field returned in the response message 

The Data fields returned in the response message contain the following properties with 
their current value: 
 
?? Applet family (1 byte) 
?? Applet version (4 bytes) 
?? Level1 access control/ Level2 access control (1 byte) 
?? Level3 access control/ RFU (1 byte) 
?? RFU byte 
?? RFU byte 
?? ID-applet AID length 
?? ID-applet AID (always on 16 bytes, padded with 0 if necessary) 
?? Key Set  (1 byte) 
?? Key Id (1 byte) 
?? Algo ID (1 bytes) 
?? Challenge length in bytes (1 byte) 
?? Response length in bytes (1 byte) 
?? RFU (x bytes to complement to 46) 
 
Processing state returned in the response message 
 
See General Error Conditions in this section. 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 90 

GET CHALLENGE 
 
Command description 
Each applet instance can receive a Get challenge command, in order to perform a host 
authentication in the following sent command. 
This command has to be sent by host just before a External authenticate command, and 
corresponds to the first step of host authentication before sending a command having an 
external authenticate security level. 
The computed challenge is valid only in the APDU following the GET CHALLENGE 
APDU. 
 
Command message  
The Get challenge command message is coded according the following table: 
 

CLA 80h 
INS 84h 
P1  00h 
P2  00h 
Lc 08h 

Data Field Empty 
Le challenge length (has to be 8 bytes) 

Response message  
Data field returned in the response message 
 
This challenge has to be memorized inside the applet instance, in order to calculate the 
corresponding response. If the response is not sent (using External Authenticate 
command) in the command following the Get Challenge command, the calculated 
challenge is then lost. 
 
Processing state returned in the response message 
 
See General Error Conditions in this section.  



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 91 

EXTERNAL AUTHENTICATE 
 
Command description 
Just after receiving a card challenge from Get challenge command, a cryptogram is 
computed by the host using the 8-Bytes card challenge, and a special 16-Bytes 3DES key 
known by the host and the static applet (with the PUTKEY command). 
The cryptogram is the result of the 3DES algorithm with the appropriate key and the 
challenge as the input. 
 
The key used to protect the level 1 operation has a key set version set to 1. 
The key used to protect the level 3 operation has a key set version set to 3. 
 
The corresponding response is then sent to the card using External Authenticate 
command. 
 
This command has to be sent by host just before a command with an External 
authentication security level, and correspond to the second step of host authentication. 
Successful cryptogram verification is mandatory to perform the following command. 
 
If the command is not sent just after the Get challenge command, card challenge is then 
lost. 
 
The External authentication is only valid while still accessing the same security level. If 
the applet receives an APDU with a different security level, the access level is lost. 
This means that if the card is removed or if the applet is unselected, the access level is 
lost. 

Command message  

The external authenticate command message is coded according the following table: 
 

CLA 80h 
INS 42h 
P1  00h 
P2  00h 
Lc 08h 

Data Field Host cryptogram 
Le Empty 

 
Data field sent in the command message  
Host cryptogram. 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 92 

Response message  
Success: 0x9000 
Access denied: 0x6982 
 
Data field returned in the response message 
 
The data field returned is always empty 
 
Processing state returned in the response message 
 
See General Error Conditions in this section. 
 
PIN VERIFY 
 
Commands description 
Each GC applet instance can receive a PIN Verify command, in order to verify a PIN 
code, or to check if a PIN code has been already verified or not. 
When receiving those commands, the selected instance forwards the information to the 
ID applet instance containing the PIN number specified in the command, through its 
shared functions. 
 
Command message  
The PIN Verify command message is coded according the following table: 
 

CLA 80h 
INS 20h 
P1 00h 
P2 00h 
Lc 00h or 08h 

Data Field PIN code to be verified 
Le Empty 

 
Data field sent in the command message  
If the data field sent in the command message does not include a PIN code, the command 
is corresponding to a PIN verify check command, in order to know if the PIN code has 
been already verified or not. 
 
If the data field includes the PIN code to be verified, the PIN code value is corresponding 
to the 8 first bytes of the data field, coded as described in the 3.1.2.4 chapter. 
 
o If the verification fails, the left PIN tries flag is decremented, and the PIN verified 

flag value does not change. The PIN always flag value is set to 00h. If the left PIN 
tries flag value is 00h, the PIN code is considered as locked. 

o If the verification succeeds, the PIN verified flag value, and the PIN always flag value 
are set to 01h. 

 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 93 

If P2 =01h, the AID of the ID applet instance containing the PIN code to be verified or 
checked is stored just after the PIN code to verify, or at the beginning of the data field if 
the command corresponds to a PIN verified check command. 
 
Response message  
 
Data field returned in the response message 
 
The data field in the response message is always empty. 
 
Processing state returned in the response message 
 
If PIN verification or PIN verified checking fails, the status code returned is SW1 = 63h, 
SW2 = left PIN tries. 
SW2 = FFh means infinite tries. 
 
Status Meaning 
63LLh PIN verify rejected and left PIN tries are ‘LL’ 
6981h No PIN code defined 
6983h PIN code blocked 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 94 

Appendix F - GSC: Interface Definition – PKI for VM Cards  
  
Scope 
This document is part of the effort led by the GSA to achieve the definition of an 
interopeability standard for Basic Services offered by the Government Smart Cards. 
 
A first level of interoperability is defined to protect the Application consumming smart 
cards from the need to know about any specific smart card. This level is achived by the 
BSI api and amounts to the “top” part of an SPS. 
 
A second level of interoperability is defined to allow smart cards to interoperate:the card-
edge interface. This level, allows any SPS provider to interoperate with any smart card 
that supports the card edge interface. 
 
This document, a Card-Edge interface specification,  describes the services and the 
interfaces of the PKI Applet at the APDU level. The PKI Applet is already used by the 
Common Access Card. This card edge interface will allow application developers: 
?? To make use of the existing instances of the PKI applet. 
?? To operate their own instance of a PKI applet. 

 
This applet card-edge specification represents an attempt to minimize the size of the code 
on the card while providing the required flexibility. Furthermore, the specification is 
voluntarily reduced to the kind of features that can be also expected from a card without a 
VM, and represents an attempt to define a feature set interoperable with this type of 
cards, while not sacrificing the efficiency of the VM card. 

 
Limitations  
The proposed card-edge interface is an operational API and not a management API. It 
does not provide services like applet download or applet instantiation. It does not allow 
the changing of access conditions associated with each instance or each file, since access 
conditions are defined during the container creation. 
PIN management functions like Change PIN or Unlock PIN are not part of this API. 
The key generation command is also not part of this version of the specification, and this 
is also true for the key injection.  
The smart card is supposed to be already initialized: applets are downloaded and 
instantiated, and the file system is created. 
Establishing these limitations is a balancing act since some services are in the gray area 
between usage and management, like PIN change by the cardholder, or the generation of 
a key pair. Two criteria help to make a decision whether the service should be excluded 
from the interoperability specification or not: 
-Is it a rare operation? 
-Is it feasible or very difficult to define an interoperable method for this service? 
 
The fact that a service is excluded from the specification does not mean it is not required 
from a smart card system, it means only that for this service interoperability is not a 
requirement, or that it cannot be technically achieved, so that putting it in the 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 95 

specification would have the result that the specification would not guaranty that all 
implementations would inter-operate. 

 
Compatibility 
This Card-Edge specification can be implemented on JAVACARD2.1, Smart Card for 
Windows 1.1, and MULTOS. 

 
Documents 
The following picture presents the tree of documents that define the standard. The 
outlined square defines the present document and its position within this tree. 

SPM Architecture Overview

Gsc BSI Provider Api 

Gsc
Card-Edge Interface
presentation

Gsc BSI-CE APDU setFile System Cards

VM Cards Gsc SKI CardEdge
API for VM cards

The Government Smart Card Interoperability Standard

Gsc Generic Container Card-Edge
API for VM cards

Gsc PKI Card-Edge
API for VM cards

Gsc SPM test specification 

 
Presentation of the PKI Applet 
This applet is responsible for RSA based operations. It can be used to perform RSA 
signature as well as to retrieve the certificate associated to the key instance.  
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 96 

The RSA key can be whether internally generated in the card or securely injected using 
the secure channel provided by the VOP ‘Security Domain’. 
 
RSA operations are performed in the ‘raw’ mode. Therefore, the signature than 
decryption operations do not differ. 
 
Security 
The design relies heavily on a subset of Open Platform 2.0 1.b security mechanisms, 
addressed by security domains, for the loading, the instantiation, and the initialization of 
the security parameters of the applet. 
These services are not exposed by the present specification, which focuses exclusively on 
usage. 
A function offered by an applet is called a service (for example: singing a message). 
The granularity of control is the service control. That means that there is one control level 
by object operated by the applet and by service. 
This control level is defined at the instantiation of the applet. It remains the same for all 
the credential life. 
 
The different control levels are the following: 
Always: the corresponding service can be provided without restrictions 
PIN protected: the corresponding service can be provided only if its associated PIN code 
has been already verified 
External authenticate: the corresponding service can be provided only after a 
get_challenge APDU.  
Never: the corresponding service can never be provided. 
 
For all services, three levels of access control are defined: 
Level1, 
Level2, 
Level3. 

 
At applet instantiation phase, for any services provided by the applet, a level has to be 
chosen.  
 
Cryptographic requirements 
This applet requires from the Card Operating System the availability of the following 
algorithms:  
DES3 ECB, double length key (16 Bytes). 
DES3 CBC, 
RSA key generation (length = 512b, 768b, 1024b) 
RSA algorithm without padding (length = 512b, 768b, 1024b) 
 
For RSA signature and decryption, it is assumed that the padding will be performed 
outside the card. 

 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 97 

Supported APDUs 
PRIVATE SIGN/DECRYPT (to sign or decrypt data using RSA private key) 
GET PROPERTIES (to retrieve applet instance properties from the card) 
GET CHALLENGE (to retrieve a challenge from the card to perform a host 
authentication) 
EXTERNAL AUTHENTICATE (to send to the card a cryptogram authenticating the 
host) 
PIN VERIFY (to perform PIN verification and to check if the PIN has been already 
verified). 

 
General Error Conditions  
The following error conditions may be returned by any of the commands hereafter 
described: 

 
Status Meaning 
6200h Applet or instance logically deleted 
6581h Memory failure 
6700h Incorrect parameter Lc 
67LLh Wrong length in Le parameter, the ‘LL’ value is 

expected 
6982h Security status not satisfied 
6985h Conditions of use not satisfied 
6A80h Invalid data in command Data Field 
6A84h Insufficient memory space to complete command 
6A86h Incorrect P1 or P2 parameter 
6A88h Referenced data not found 
6D00h Unknown instruction given in the command 
6E00h Wrong class given in the command 
6F00h Technical problem with no diagnostic given 
9000h Normal ending of the command 

 
Access Control Configurations  
Several security parameters can be defined according to the following table. These 
parameters are defined at the instantiation phase as described in the next chapter. 

 
Global Service Always PIN  Extern 

auth. 
Never 

Level1  X X X X 
Level2 X X  X 
Level3 X X X X 
 

The association between the APDUs (described later in the 
document) and the services is accorded to this table: 
 

Service Level 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 98 

Generate key  Level 1 
Private sign & 
decrypt 

Level 2 

Read certificate Level 3 
 

Only level 1 and level 3 operations can be protected by an external authentication. The 
authentication key as to be stored in a key set ( see VOP definition of a key set). The 
associated key for controlling the access to level 1 operation must have a key-set version 
equal to 1. Also, to protect level 3 operations, the associated key needs to be stored in a 
key-set that has a key-set version set to 3. 
For information, other APDUs have a fixed access control set to: 

 
 

Service Security level 
Get Properties  Always 
Put Key Secure 

channel 
Get challenge Always 
External authenticate Always 
Pin Verify Always 
 

Security levels are coded as fo llows in applets: 
 

Security level Value 
Always 0 
Never 1 
External authenticate 2 
PIN protected 6 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 99 

 
PKI Applet APDU Interface 
 
PRIVATE SIGN/DECRYPT 
 
Introduction 
This command is used to perform a RSA signature or data decryption. 
 
Command message  
The Private sign/decrypt command message is coded according the following table: 
 

CLA 80h  (whatever the access control rules are) 
INS 42h 
P1 00h 
P2 00h 
Lc Data Field length (modulus length) 

Data Field Data to sign 
Le Expected length of the signature/decryption 

 
Data field sent in the command message  
The data field contains the data to be signed using the selected RSA key pair. 
 
The data have to be already padded according to the standard used (PKCS#1 for 
example), before the message is sent. The message is never padded in the card. 

Response message  
Data field returned in the response message 
 
The data field in the response message contains the data signed or decrypted. 
 
Processing state returned in the response message 
 
See General Error Conditions in this section. 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 100 

GET CERTIFICATE 
Introduction 
This command is used to retrieve the certificate associated to a RSA key pair. 
 
This is operational if the certificate has been stored in a GCA instance where the AID is 
0xA00000007901FEh. 
 
Command message  
The Get Certificate command message is coded according the following table: 
 

CLA 80h (whatever the access control rules are) 
INS 36h 
P1 00h 
P2 00h 
Lc 00 

Data Field Empty 
Le 00h 

 
Response message  
 
Data field returned in the response message 
 
The data field in the response message contains 255 bytes of certificate (or less). The host 
application determines if there is more data to read depending on the Status word filled 
by the applet. 9000h means the complete certificate has been read, 6310h means that 
more data is available. 
 
Processing state returned in the response message 
 
Status Meaning 
6981h No corresponding certificate 
6310h More data is available 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 101 

GET PROPERTIES 
 
Introduction 
This command is used to retrieve applet instance properties.  
Command message 
 
The Static Get properties command message is coded according the following table: 
 

CLA 80h 
INS 56h 
P1 00h 
P2 00h 
Lc 00h 

Data Field Empty 
Le Expected applet instance properties length 

 
Response message  
 
Data field returned in the response message 
 
The Data fields returned in the response message contain the following properties with 
their current value: 
 
?? Applet family (1 byte) 
?? Applet version (4 bytes) 
?? Level1 access control/ Level2 access control (1 byte) 
?? Level3 access control/ RFU (1 byte) 
?? RFU byte 
?? RFU byte 
?? ID-applet AID length 
?? ID-applet AID (always on 16 bytes, padded with 0 if necessary) 
?? Key Set  (1 byte) 
?? Key Id (1 byte) 
?? Key length (1 bytes) 
?? RFU (x bytes to complement to 46) 
 
Processing state returned in the response message 
 
See General Error Conditions in this section. 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 102 

GET CHALLENGE 
 
Command description 
Each applet instance can receive a Get challenge command, in order to perform a host 
authentication in the following sent command. 
This command has to be sent by host just before a External authenticate command, and 
corresponds to the first step of host authentication before sending a command having an 
external authenticate security level. 
The computed challenge is valid only in the APDU following the GET CHALLENGE 
APDU. 
 
Command message  
The Get challenge command message is coded according the following table: 
 

CLA 80h 
INS 84h 
P1  00h 
P2  00h 
Lc 08h 

Data Field Empty 
Le challenge length (has to be 8 bytes) 

 
Response message  
 
Data field returned in the response message 
 
This challenge has to be memorized inside the applet instance, in order to calculate the 
corresponding response. If the response is not sent (using External Authenticate 
command) in the command following the Get Challenge command, the calculated 
challenge is then lost. 
 
Processing state returned in the response message 
 
See General Error Conditions in this section. 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 103 

EXTERNAL AUTHENTICATE 
 
Command description 
Just after receiving a card challenge from Get challenge command, a cryptogram is 
computed by the host using the 8-Bytes card challenge, and a special 16-Bytes 3DES key 
known by the host and the static applet (with the PUTKEY command). 
The cryptogram is the result of the 3DES algorithm with the appropriate key and the 
challenge as the input. 
 
The key used to protect the level 1 operation has a key set version set to 1. 
The key used to protect the level 3 operation has a key set version set to 3. 
 
The corresponding response is then sent to the card using External Authenticate 
command. 
 
This command has to be sent by host just before a command with an External 
authentication security level, and correspond to the second step of host authentication. 
Successful cryptogram verification is mandatory to perform the following command. 
 
If the command is not sent just after the Get challenge command, card challenge is then 
lost. 
 
The External authentication is only valid while still accessing the same security level. If 
the applet receives an APDU with a different security level, the access level is lost. 
This means that if the card is removed or if the applet is unselected, the access level is 
lost. 
 
Command message  
The external authenticate command message is coded according the following table: 
 

CLA 80h 
INS 42h 
P1  00h 
P2  00h 
Lc 08h 

Data Field Host cryptogram 
Le Empty 

 
Data field sent in the command message  
Host cryptogram. 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 104 

Response message  
Success: 0x9000 
Access denied: 0x6982 
 
Data field returned in the response message 
 
The data field returned is always empty 

Processing state returned in the response message 

 
See General Error Conditions in this section. 
 
PIN VERIFY 
 
Commands description 
Each GC applet instance can receive a PIN Verify command, in order to verify a PIN 
code, or to check if a PIN code has been already verified or not. 
When receiving those commands, the selected instance forwards the information to the 
ID applet instance containing the PIN number specified in the command, through its 
shared functions. 
 
Command message  
The PIN Verify command message is coded according the following table: 
 

CLA 80h 
INS 20h 
P1 00h 
P2 00h 
Lc 00h or 08h 

Data Field PIN code to be verified 
Le Empty 

 
Data field sent in the command message  
If the data field sent in the command message does not include a PIN code, the command 
is corresponding to a PIN verify check command, in order to know if the PIN code has 
been already verified or not. 
 
If the data field includes the PIN code to be verified, the PIN code value is corresponding 
to the 8 first bytes of the data field, coded as described in the 3.1.2.4 chapter. 
 
o If the verification fails, the left PIN tries flag is decremented, and the PIN verified 

flag value does not change. The PIN always flag value is set to 00h. If the left PIN 
tries flag value is 00h, the PIN code is considered as locked. 

o If the verification succeeds, the PIN verified flag value, and the PIN always flag value 
are set to 01h. 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 105 

 
If P2 =01h, the AID of the ID applet instance containing the PIN code to be verified or 
checked is stored just after the PIN code to verify, or at the beginning of the data field if 
the command corresponds to a PIN verified check command. 
 
Response message  
 
Data field returned in the response message 
 
The data field in the response message is always empty. 
 
Processing state returned in the response message 
 
If PIN verification or PIN verified checking fails, the status code returned is SW1 = 63h, 
SW2 = left PIN tries. 
SW2 = FFh means infinite tries. 
 
Status Meaning 
63LLh PIN verify rejected and left PIN tries are ‘LL’ 
6981h No PIN code defined 
6983h PIN code blocked 
 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 106 

Appendix G - GSC: SPM Test Requirements & Procedures  
 
 
Scope 
This document is part of the effort led by the GSA to achieve the definition of an 
interoperability standard for Basic Services offered by the Government Smart Cards. 

 
Limitations  
The goal of this specification is to achieve the interoperability of smart card subsystems 
for the following Basic Services : 
Secure Storage and retrieval of J.8 data 
Basic cryptographic  services 
Two main level of specification have been addressed : 
A provider level with the BSI API : this API protects the applications from the specifics 
of the card subsystems (SPM). 
A Card-edge level : this interface provides the interoperability at the card level. 
 
The present requirement document shall focus on the interoperability features of these 
two  levels of specification. An interesting side effect of the testing procedures is the de-
facto validation of the lower layers. 
 
Documents 
The following picture presents the tree of documents that define the standard. The 
outlined square defines the present document and its position within this tree.  

 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 107 

SPM Architecture Overview

Gsc BSI Provider Api 

Gsc
Card-Edge Interface
presentation

Gsc BSI-CE APDU setFile System Cards

VM Cards Gsc SKI CardEdge
API for VM cards

The Government Smart Card Interoperability Standard

Gsc Generic Container Card-Edge
API for VM cards

Gsc PKI Card-Edge
API for VM cards

Gsc SPM test specification 

 
 
Objectives & Expected Outcomes of the Interoperability testing 
A smart card subsystem is constituted of a number of loosely coupled software and 
hardware components which interoperability must be proven before they can be 
deployedlist as 5 bullets 
?? BSI provider with a BSI API 
?? a card edge SPI 
?? a smart card 
?? a reader driver 
?? a reader 
 
 
 
 
The purpose of the testing effort is not general Quality Insurance, it is interoperability: 
bugs are not explicitly looked for. Nevertheless, bugs prevent the system to “operate”, 
ergo, to “interoperate” and shall therefore constitute a cause for failing a system to pass 
the interoperability testing. 
 
Requirements 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 108 

Reader/Card interface 
It has been an observation that on occasion, some smart card readers (IFDs) fail in 
communications with some smart card devices, despite the putative compliance of both 
with the ISO 7816 standards.  It is possible for two separate smart card solution systems, 
designed and successfully tested under the GSA Government Smart Cards 
interoperability standards, to have internal card-reader compatibility and still fail in 
intersystem interoperability because the problems between the cards of one system and 
the readers of the other.  It has therefore been suggested that card-reader compatibility be 
included in the GSA Interoperability Test Plan. 
 
It has been the experience of some that smart card incompatibility with smart card readers 
has revealed problems in two critical areas: 
?? Inability of the reader to process the card ATR Interface Characters, TA(1) to TD(n), 

to establish a communication protocol. 
?? Timing issues, especially reader timeouts in command/response transmissions 

between the reader and the card. 
 
One proposed test plan for card-reader compatibility is as follows: 
 
Test Objectives 
The purpose of this test is to screen for failures in smart card communications with smart 
card IFDs, focusing on the initial communication protocol and card-reader timing, then 
any additional designated critical areas. 
 
Test Method 
?? Test Case 1: Card-reader communication protocol in response to the card ATR at card 

power-up. 
 
Step 1: When a card is initially powered up the response should be checked for 
the correct ATR, and any error codes returned by the reader should be checked (if 
the reader supports this feature) 
Expected Result: The card ATR is returned correctly, in its entirety, and the 
reader returns no error codes. 
 
Step 2: One or more standard, non-destructive command, such as the Select File 
command, should be sent to the card.  These commands can be selected from the 
card-specific APDU information used in card interoperability testing. 
Expected Result: For each command, the card returns a successful response, and 
the reader returns no error codes. 
 
Success Measure: The results for all steps in the test case are successful. 

 
?? Test Case 2: Timeout failures during card-reader command-response exchange. 

 
Step 1: One or more time- intensive command, such as Generate Key Pair for 
cards supporting PKI, or Read Binary for a large block, should be sent to the card. 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 109 

These commands can be selected from the card-specific APDU information used 
in card interoperability testing. 
Expected Result: For each command, the card returns a successful response, and 
the reader returns no error codes. 
 
Success Measure: The results for all steps in the test case are successful. 

 
Test Setup 
All smart cards currently under consideration for testing should be tested in the 
designated central testing facility against the battery of readers selected by the Primes for 
evaluation for compatibility.  A fairly simple test tool designed to use APDU scripts, 
derived from the card-specific APDU information used in card interoperability testing, 
along with the PCSC support designated for use with the reader.  It is important that Java 
cards be loaded with the same applets to be used in the actual smart card solution, as 
timeout issues can be highly applet-specific.  If embedded systems wish to be evaluated 
for card-reader compatibility, further modification of the test platform will be necessary. 
 
Card Edge testing 
The objective is to test the compliance of the card to the card-edge interoperability 
specification. 
 
Card Edge Testing platform: provided by the GSA 
Windows2000 workstations with the interfaces required for reader connectivity: 
-Serial, USB, Pc-card, parallel. 
It should be noted that readers are required to interoperate with one another on the same 
workstation. Therefore, once reader has been validated, its drivers must be uninstalled. 
 
Card Edge Test Kit: provided by the primes 
5 cards per card type must be provided. These cards must have been personalized, which 
means: 
?? The PIN has been set 
?? The Capability container has been initialized on the card according to the 

specification (the capability container is only needed for cards that do not support the 
default APDU set) 

?? A simple APDU script allowing to read the whole capability file is provided. 
?? The J.8 containers have been initialized according to the specification 
?? The SKI  keys have been initialized and are provided. 
?? The PKI key pair has been initialized. 
?? The certificate is present on the card. 
 
Card Edge Test requirements for File system cards  
A testing sample that satisfies the following requirements must be provided by the GSA: 
?? Read the Capability file 
?? Parse the capability file and verify its internal format: TLV 
?? Use capability directives to access to the J.8 containers. 
?? Verify CHV possibly using a corresponding capability 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 110 

?? Read the J.8 containers: verify internal TLV format, as well as CRC and LRC. 
?? Proceed to an SKI internal authentication using challenge/response 
?? Proceed to an SKI external authentication using challenge/response 
?? Get certificate and extract the public key 
?? Do an RSAcompute: for example sign a message and verify the cryptogram with the 

public key. 
Card Edge Test requirements for JavaCards  
A testing sample that satisfies the following requirements must be provided by the GSA: 
?? Read the Capability Container if it exists.(in the case of a VM card, the capability is 

only needed for addressing the differences in the way to implement the access control 
rules to J.8).  

?? Parse the capability container  and verify its internal format: TLV 
?? Read the  J.8 containers, possibly using the information extracted from the capability 

container 
?? Verify CHV  
?? Read the J.8 containers: verify internal TLV format, as well as CRC and LRC. 
?? Proceed to an SKI internal authentication using challenge/response 
?? Proceed to an SKI external authentication using challenge/response 
?? Get certificate and extract the public key 
?? Do an RSAcompute: for example sign a message and verify the cryptogram with the 

public key. 
 
BSI Testing 
The objective is to test the compliance of the BSI to the interoperability specification. 
The BSI is the most complexe part of the SPM to test since it is composed of 2 interfaces: 

?? The BSI API, which is the interface the provider exposes to  applications  
?? The Card-Edge, which the SPI the provider exposes to cards. 

Unfortunately it is hardly possible the testing of the 2 interfaces. 
 
BSI testing platform: provided by the GSA 
This version of the test requirement focuses on WINTEL platforms. The BSI provider 
shall be tested on the following platforms and be certified on the platform where it 
succeeded: 

?? Windows95/98 with the PC/SC components 
?? NT4 SP6 with the PC/SC components 
?? Windows2000 

The testing procedure must be run on each platform. 
 
A collection of cards with a tested and validated card-edge are required [these cards are 
personalized cards]. There should be at least of File System Card and one VM card. 
 
A collection of readers with validate drivers and operation validated with the cards above 
must be provided. 
BSI Test Kit: provided by the primes 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 111 

?? BSI provider dlls with installation instructions or automated installation procedure 
for the operating system of choice for the certification. 

?? List of known limitations of the provider implementation. 
?? List of known minor bugs of the provider implementation. 
?? The SKI keys held by the cards must be provided for the testing of the SKI, 
 

 
BSI Test Requirements 
A testing sample that exercises the calls of the BSI must be provided by the GSA. 
For any provider to be validated, the sample must be run on at least to different types of 
cards (Javacard and file system cards), preferably on the collection of cards that have 
passed card-edge. If a service is not provided by a card, the provider must gracefully 
return “service unavailable”. 

 
gscBsiUtilGetReaderList() 

Retrieves the list of configured readers. The support of only one reader is required for 
the tests. 

 
gscBsiUtilGetCardStatus() 

Retrieves card presence for a connection handle or a reader. Test extraction and 
insertion of a card. 

 
gscBsiUtilCardConnect() 

Connect to the card, using the reader name the card is inserted in.  
 
gscBsiUtilCardDisconnect() 

Disconnect to the card 
 
gscBsiUtilGetCardProperties() 

Retrieve card dependant data (Serial number) 
 

gscBsiUtilGetVersion() 
Retrieve the version of the provider. 

 
gscBsiUtilPassthru() 

Allows to send an APDU to the card or the applet and get the answer from the card. 
Use  it to read the Capability file. 

 
gscBsiUtilAcquireContext() 

Establishes the Security Context required by the command, as discovered using the 
appropriate get_properties function.  Only PIN verification (CHV) is required for 
testing. 

 
gscBsiUtilReleaseContext() 

Releases the Security Context previously established.  
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 112 

gscBsiGcDataCreate() 
Create a new data item in the selected container. This will store a value and a Tag.  

gscBsiGcDataDelete() 
Delete a data in the selected container. 

gscBsiGcReadTagList() 
Read the list of Tags in the selected container. 

 
gscBsiGcReadValue() 

Retrieve the current value of a given Tag in the selected container. 
 

gscBsiGcUpdateValue() 
Update the current value of a given Tag with the provided value.  

 
 

gscBsiGetChallenge() 
Retrieve a challenge from the card.  

 
gscBsiSkiInternalAuthenticate() 

Compute a symmetric key cryptography authenticator in response to a challenge. 
 

gscBsiPkiCompute() 
Compute the private key encrypt/decrypt. The mandatory PKI algorithm of the BSI is 
RSA_NO_PAD.  

 
gscBsiPkiReadCertificate() 

Read the certificate 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 113 

 
Appendix H - Revised Section J.8, GSA Common Data Model 

 
 
General Information Type Max. Length (Bytes) 

  
First Name Variable 20 
Middle Name Variable 20 
Last Name Variable 20 
Suffix Variable 4 
Government Agency Variable 30 
Bureau Name Variable 30 
Agency Bureau Code Variable 4 
Department Code Variable 4 
Position/Title Variable 30 
Building Name Variable 30 
Office Address 1 Variable 60 
Office Address 2 Variable 60 
Office City Variable 50 
Office State Fixed Text 20 
Office ZIP Variable  15 
Office Country Fixed Text 4 
Office Phone Variable 15 
Office Extension Variable 4 
Office Fax Variable 15 
Office Email Variable 60 
Office Room Number Variable 6 
SSN Designator Variable 6 
Non-Government Agency Fixed Text 1 

  
Protected Personal Information Type Max. Length (Bytes) 

  
Social Security Number Fixed Text 9 
Date of Birth Date 8 
Gender Fixed Text 1 

  
Access Control Type Max. Length (Bytes) 

  
SEIWG Data Fixed Text 40 
PIN Fixed Numeric 10 
Domain ( Facility / System ID ) Variable 8 

  



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 114 

Login Information Type Max. Length (Bytes) 
  

User ID Variable 60 
Domain Variable 60 
Password Variable 20 

  
Card Information Type Max. Length (Bytes) 

  
Issuer ID Variable 32 
Issuance Counter Variable 4 
Issue Date Date (YYYYMMDD) 8 
Expiration Date Date (YYYYMMDD) 8 
Card Type Variable 32 
Demographic Data Load Date Date (YYYYMMDD) 8 
Demographic Data Expiration Date Date (YYYYMMDD) 8 
Card Security Code Fixed Text 32 
Card ID/AID Variable 32 

  
Biometrics – X.509 Certificate Type Max. Length (Bytes) 

  
Template Variable 512 
Certificate Variable 1500 

  
PKI – Digital Signature Certificates Type Max. Length (Bytes) 

  
Certificate Variable 3000 
Issue Date Date (YYYYMMDD) 8 
Expiration Date Date (YYYYMMDD) 8 
 
 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 115 

 
GLOSSARY 

 
 
 
ACK   Acknowledgment 
AID   Application Identifier 
ANSI   American National Standards Institute 
APDU  Application protocol data unit 
API  Applications Programming Interface 
ATR   Answer-to-Reset 
BSI  Basic Services Interface 
C-APDU  Command APDU 
CAPI  Cryptographic Applications Programming Interface 
CHV   Card Holder Verification 
CLA   Class Byte of the Command Message 
CLK   Clock 
Cold reset  The reset of an ICC that occurs when the supply voltage (VCC) and other 

signals to the ICC are raised from the inactive state and the reset (RST) 
signal is applied. 

Command  A message sent by the terminal to the ICC that initiates an action and 
solicits a response from the ICC. 

Contact  A conducting element ensuring galvanic continuity between integrated 
circuit(s) and the external interfacing equipment. 

CSP  Cryptographic Service Provider 
CRC  Cyclic Redundancy Check 
CWI   Character Waiting Time Integer 
CWT   Character Waiting Time 
DAD   Destination Node Address 
Data unit   The smallest set of bits that can be unambiguously referenced. 
EDC   Error Detection Code 
ETU   Elementary Time Unit 
GND   Ground 
GSC Government Smart Card, as defined in the Smart Access Common 

Identification Card Solicitation. 
GSC-IS Government Smart Card Interoperability Specification. 
Guardtime  The minimum time between the trailing edge of the parity bit of a 

character and the leading edge of the start bit of the following character 
sent in the same direction. 

Half-duplex transmission: 
Two-way electronic communication that takes place in only one direction 
at a time.  

HLSI  High Level Service Interface 
HSM  Hardware Security Module 
I-block  Information block associated with the T=1 protocol. 
ICC   Integrated Circuit Card 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 116 

IEC   International Electrotechnical Commission. 
IFD   Interface Device 
IFS   Information Field Size associated with the T=1 protocol. 
IFSC   Information Field Size for the ICC associated with the T=1 protocol. 
IFSD   Information Field Size for the terminal associated with the T=1 protocol. 
IFSI   Information Field Size Integer associated with the T=1 protocol. 
Inactive  The supply voltage (VCC) and other signals to the ICC are in the inactive 

state when they are at a potential of 0.4 V or less with respect to ground 
(GND). 

INF   Information field associated with the T=1 protocol. 
INS  Instruction Byte of Command Message associated with the T=0 and T=1 

protocol. 
ISO   International Organization for Standardization 
LEN   Length 
LRC   Longitudinal Redundancy Check associated with the T=1 protocol. 
NAD   Node address associated with the T=1 protocol. 
NAK   Negative ACK 
OCF  Open Card Framework 
P1(2)   Parameters used in the T=0 and T=1 protocol. 
PCB   Protocol Control Byte 
PC/SC  Personal Computer/Smart Card 
PIN   Personal Identification Number 
PTS   Protocol Type Selection 
PKCS  Public Key Cryptography System 
R-APDU  Response APDU 
R-block  Receive Ready Block 
Response  A message returned by the ICC to the terminal after the processing of a 

command message received by the ICC.RFU Reserved for Future Use. 
RST   Reset 
R-TPDU  Response TPDU 
SAD   Source Node address associated with the T=1 protocol. 
SEIWG Security Enterprise Integration Working Group 
SPI  Service Provider Interface 
SPM (Also GSC-SPM): 

Service Provider Module 
SPS  Service Provider Software 
S-block  Supervisory Block 
State A  Space (as defined in ISO 1177) 
State H   High state logic level 
State L  Low state logic level 
State Z  Mark (as defined in ISO 1177) 
SW1 (2)  Status Byte 1 (2) 
T=0   Character-oriented asynchronous half duplex transmission protocol 
T=1   Block-oriented asynchronous half duplex transmission protocol 
TAL   Terminal Application Layer 
TCK   Check Character 



 

Contract No.:  GS00T00ALD0208  PS02          © 2000                                        Page 117 

TLV   Tag-Length-Value 
TPDU   Transport Protocol Data Unit 
TTL   Terminal Transport Layer 
VCC   Supply Voltage 
VPP   Programming Voltage 
Warm reset  The reset of an ICC that occurs when the supply voltage (VCC) and the 

clock (CLK) lines are maintained in their active state and the reset (RST) 
signal is applied. 

WI   Waiting Time Integer 
WTX   Waiting Time Extension 
XSI   Extended Service Interface(s) 


